The influences of incorporating compatibilizers E-EA-MAH, E-MA-GMA, E-AM, SEBS KRATON G, or PP-g-MAH on the thermal properties of mixed (polypropylene/ethylene propylene rubber)/acrylonitrile butadiene styrene (PP/EPR)/ABS have been investigated. DSC investigations have revealed that the incorporation of 5% of ABS in the copolymer (PP/EPR) does not fundamentally affect the thermal properties of the basic copolymer; additionally, the addition of 1.5% of each of the compatibilizers in the basic mixture does not significantly alter the crystallization temperature values and the melting of the -P-sequences. There is a variation of melting enthalpy values of the -P-sequences of 18.23% using SEBS KRATON G and of 10.38% using E-AM-GMA. When the rate of each of the compatibilizers increases to 5%, overall crystallization enthalpies of -P-sequences are almost kept unchanged, except for the case of using the compatibilizer E-AM-GMA with a variation of 8.42%. There is a minor variation of the melting enthalpy of -P-sequences with higher levels of compatibilizer. The incorporation of 5% ABS copolymer in the PP/EPR does not significantly alter the thermal properties of the basic structure of (PP/EPR)/ABS.
This work investigates the physico-chemical and mechanical properties of tannins extracted from wood for composite materials manufacturing. Sustainable knowledge (in terms of physico-chemical properties and behaviours) of the material is needed to further enhance its applications. The condensed tannins extracted from the Bark of Ficus platyphylla (BFP) , as well as using CP MAS 13 C-NMR. It was found that, these two tannins are procyanidin/prodelphinidin and made up of catechin/epicatechin, gallocatechin/epigallocatechin units, fisetinidin, galloyl and carbohydrates residues. Furthermore, BFP and BVP tannin bonded particleboard densities lie in the range recommended by NF EN 326-1994 standard. The resins also yielded good internal bond strength results of the panels, above relevant international standard specifications minimum requirements for interior-grade panels. The Transmission Electron Microscopy with Energy Dispersive X-ray Spectroscopy Analysis (TEM/ EDXA) are showing the ultrastructure and reveal that most of the resin material appears to be in an amorphous phase mainly composed of carbon/oxygen with
The objective of this paper is to investigate the relative variations of the constants of the thermal properties and the degree of crystallinity of the mixtures (PP/EPR)/Calcium carbonates elaborated with the Micro Bivis. We have strengthened the basic copolymer PP/EPR of a low level (5%) by three calcium carbonates models socal312, socal322v, Winnofil spm. We then subjected the different mixtures obtained, two cycles of a thermal loading under differential scanning calorimetry DSC. We finally focused on the thermal properties of isotactic polypropylene (T fP , T cP , ΔH fP , ΔH cP ) and we calculated the degree of crystallinity of the mixtures. Reducing the energy cost of implementing mixtures is one of the objectives of this work. We quantified the relative variations of the above properties with those of the base copolymer. It shows that at a low loading rate of calcium carbonate, there is a decrease in the enthalpies of crystallization during the second exothermic cycle, with values that can reach 5.53 J/g PP for the basic copolymer PP/EPR. During the second endothermic cycle, there is an overall increase in isotactic polypropylene melting temperature values for all the blends as well as for the basic copolymer PP/EPR. There is evidence that calcium carbonates are useful for lowering the melting energy of isotactic polypropylene, even at a low loading rate for the majority. The number of endothermic cycles accentuates this phenomenon which is linked to the presence in our composites, of a so-called confined amorphous phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.