This paper focuses on the study of the physical, biochemical, structural, and thermal properties of plant fibres of Rhecktophyllum camerunense (RC), Neuropeltis acuminatas (NA) and Ananas comosus (AC) from the equatorial region of Cameroon. The traditional use of these fibres inspired researchers to investigated their properties. This study aims at improving the state of knowledge with a view to diversifying applications. The fibres are extracted by retting. Then, their apparent density was measured following the ASTM D792 standard and their water moisture absorption and moisture content were also evaluated. Their molecular structure was studied by ATR-FTIR spectroscopy. A quantitative analysis of the biochemical composition was performed according to the analytical technique for the pulp and paper industry (TAPPI). A TGA/DSC analysis was also performed. The results reveal that the AC, NA and RC fibres have densities of 1.26 ± 1.06, 0.846 ± 0.13 and 0.757 ± 0.08 g•cm −3 respectively. They are also hydrophilic with a water absorption rate of 188.64 ± 11.94%, 276.16% ± 8.07% and 198.17% ± 20%. They have a moisture content of 12.21%, 10.36% and 9.37%. The studied fibres exhibit functional groups that are related to the presence of hemicellulose, pectin, lignin and cellulose. The cellulose crystallinity index was found to be 67.99%, 46.5% and 59.72% respectively. The fibres under study have the following chemical composition: an extractive content of 3.07%, 14.77% and 8.74%; a pectin content of 4.15%, 7.69% and 3.45%; a hemicellulose content of 4.90%, 15.
The project consists in the implementation of a biocomposite based on tannin resin and natural rubber matrices with the bast fibres of Triumfetta cordifolia A.Rich. "Okong" from the equatorial region of Cameroon as reinforcement. A study of this still little known fibre is necessary. This paper evaluates the physico-chemical and mechanical characteristics of the fibers. The fibers are extracted by us. A series of experiments is conducted for this purpose: morphological observation with a scanning electron microscope (SEM); density evaluation with a helium pycnometer; absorption rate evaluation according to the protocol available in the literature, Fourier Transform Infrared Spectrometry (FT-IR), chemical composition evaluation according to ASTM 1972 and ASTM 1977 standards, thermogravimetric analysis (TGA) and tensile tests on fiber bundles according to NF T25-501-3. The results show that the fiber is made up of several elementary fibers with oval cross-sections. A density of 1.477 g/cm 3 close to that of hemp. These fibers have a water absorption rate of 342.5%, which correlates with the presence of free hydroxyl functional groups obtained from the spectrometry study (FT-IR). Chemical analysis reveals that the fiber is made up of celluloses (44.4%), hemicelluloses (30.8%), lignins (18.9%), pectins (3.3%), waxes (0.5%) and minerals (2.1%). In addition, we learn that the fibers studied dehydrate at 11.49%, showing a notable thermal stability around 235˚C with a peak thermal decomposition of
The influences of incorporating compatibilizers E-EA-MAH, E-MA-GMA, E-AM, SEBS KRATON G, or PP-g-MAH on the thermal properties of mixed (polypropylene/ethylene propylene rubber)/acrylonitrile butadiene styrene (PP/EPR)/ABS have been investigated. DSC investigations have revealed that the incorporation of 5% of ABS in the copolymer (PP/EPR) does not fundamentally affect the thermal properties of the basic copolymer; additionally, the addition of 1.5% of each of the compatibilizers in the basic mixture does not significantly alter the crystallization temperature values and the melting of the -P-sequences. There is a variation of melting enthalpy values of the -P-sequences of 18.23% using SEBS KRATON G and of 10.38% using E-AM-GMA. When the rate of each of the compatibilizers increases to 5%, overall crystallization enthalpies of -P-sequences are almost kept unchanged, except for the case of using the compatibilizer E-AM-GMA with a variation of 8.42%. There is a minor variation of the melting enthalpy of -P-sequences with higher levels of compatibilizer. The incorporation of 5% ABS copolymer in the PP/EPR does not significantly alter the thermal properties of the basic structure of (PP/EPR)/ABS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.