Background Protothecosis is a rare infectious disease caused by unicellular, achlorophyllous, microalgae of the genus Prototheca, ubiquitously distributed in nature. The algae are emerging pathogens, whose incidence is increasing in both human and animal populations and serious systemic infections related to this pathogen have been increasingly described in humans in recent years. After mastitis in dairy cows, canine protothecosis is the second most prevalent form of the protothecal disease in animals. Here, we report the first case of chronic cutaneous protothecosis due to P. wickerhamii in a dog in Brazil, successfully treated with a long-term therapy with itraconazole in pulse. Case presentation Upon clinical examination, exudative nasolabial plaque, ulcered, and painful lesions in central and digital pads and lymphadenitis were observed in a 2-year-old mixed-breed dog, with a 4-month history of cutaneous lesions and contact with sewage water. Histopathological examination revealed intense inflammatory reaction, with numerous spherical to oval, encapsulated structures stained with Periodic Acid Schiff, compatible with Prototheca morphology. Tissue culture on Sabouraud agar revealed yeast-like, greyish-white colonies after 48 h of incubation. The isolate was subjected to mass spectrometry profiling and PCR-sequencing of the mitochondrial cytochrome b (CYTB) gene marker, leading to identification of the pathogen as P. wickerhamii. The dog was initially treated with oral itraconazole at a dosage of 10 mg/kg once daily. After six months, the lesions resolved completely, yet recurred shortly after cessation of therapy. The dog was then treated with terbinafine at a dose of 30 mg/kg, once daily for 3 months, with no success. The resolution of clinical signs, with no recurrence over a 36-months follow-up period, was achieved after 3 months of treatment with itraconazole (20 mg/kg) in pulse intermittently on two consecutive days a week. Conclusions This report highlights the refractoriness of skin infections by Prototheca wickerhamii with therapies proposed in the literature and suggests a new treatment option with oral itraconazole in pulse dosing for long-term disease control successfully performed in a dog with skin lesions.
The aim of this study was to verify the efficiency and ovulation time after the administration of different inducers for synchronization of ovulation in beef cows. One hundred and eight non-lactating cows were distributed into the control group (CG; untreated; n=28), estradiol benzoate (EB) group (EBG; n=28); 17 beta-estradiol (17ßE) group (17ßEG; n=28), and deslorelin (DES) group (DESG; n=24). On day minus 11 (D-11) of the protocol, the CG underwent application of cloprostenol and ultrasound examination (US); on D0, progesterone (P4) was inserted plus EB; on D7, cloprostenol was applied; on D9, P4 was removed and cloprostenol plus 400 IU of equine chorionic gonadotropin (eCG) was injected. The EBG was subjected to treatment identical to that of the CG, except on D10, when the cows received EB. The 17ßE was subjected to the same protocol used in the CG except for the administration of 17ßE on D10. And, the DESG was subjected to the same treatment as the CG, except on D10, when the group received DES acetate. Twelve hours after the administration of EB, 17ßE and DES, ovarian US were performed every 6 hours. The preovulatory follicle (POF) diameters measured before ovulation were 19.5; 14.7; 18.7 and 19.8 mm respectively for CG, EBG, 17ßEG and DESG; and the time intervals between inducer application and ovulation were 20.2; 18.9; 21.0 and 22.5 hours respectively. In conclusion, all ovulation inducers were efficient in promoting ovulation; the inducers caused ovulation between 18.9 and 22.5 hours; EB promoted ovulation in a shorter time (P<0.05); 17ßE and DES showed greater variation in application/ovulation time between groups.
The study aimed to determine the patterns of serum progesterone concentration in estrous cycle in dairy cows by a chemiluminescence assay (CLIA). Four non-lactating multiparous Jersey cows were used. Animals with a corpus luteum (CL) in any of the ovaries were induced into estrus. Day zero (d0) of the estrous cycle was defined as the day of visible estrus. Blood samples were collected and ultrasonography (US) of the ovaries were performed until a new manifestation of visible estrus was observed. The lengths of the estrous cycles (estrus to estrus) of the four cows were 20, 21, 22, and 23 days. The mean serum concentrations of P4 (x ± s) were 2.8 ± 1.4 ng/mL in proestrus, 2.4 ± 1.5 ng/mL in estrus, 2.0 ± 1.8 ng/mL in metestrus, and 11.9 ± 5.7 ng/mL in diestrus. The follicular and luteal phases of the estrous cycle were established based on P4 concentrations. P4 serum concentrations ≥5.48 ng/mL indicated the presence of functional CL, which was observed from d3 to d12 of the cycle. P4 concentrations decreased from d13 until next estrus. Thus,
Resumo O objetivo do estudo foi verificar a eficiência e a ovulação após a administração de diferentes indutores para a sincronização da ovulação em vacas de corte. Cento e oito vacas não-lactantes foram distribuídas em grupo controle (GC; não tratadas; n=28); grupo benzoato de estradiol (BE) (GBE; n=28); grupo 17 beta-estradiol (17ßE) (G17ßE; n=28) e grupo deslorelina (DES) (GDES; n=24). No dia menos 11 (D-11) do protocolo, o GC recebeu cloprostenol e exame ultrassonográfico (US); ao D0, dispositivo de progesterona (P4) foi inserido mais BE; ao D7, cloprostenol foi aplicado; ao D9, a P4 foi removida e cloprostenol mais 400 UI de gonadotrofina coriônica equina (eCG) foi injetada. O GBE foi submetido a tratamento idêntico ao do GC, exceto ao D10, quando as vacas receberam BE. o G17ßE foi submetido ao mesmo protocolo usado no CG exceto pela administração de 17ßE ao D10. E, o GDES foi submetido ao mesmo tratamento que o CG, exceto ao D10, quando o grupo recebeu o acetato de DES. Doze horas após a administração de BE, 17ßE e DES, US ovarianos foram realizados a cada 6 horas. O diâmetro do folículo pré-ovulatório (FPO) medido antes da ovulação foi de 19,5; 14,7; 18,7 e 19,8 mm respectivamente para GC, GBE, G17ßE e GDES; e o intervalo de tempo entre a aplicação do indutor e ovulação foi 20,2; 18,9; 21;0 e 22,5 horas respectivamente. Em conclusão, todos os indutores da ovulação foram eficientes em promover a ovulação; os indutores acarretaram ovulação entre 18,9 e 22,5 horas; o BE promoveu a ovulação em menor espaço de tempo (P<0,05); 17ßE e DES demonstraram maior variação em aplicação/tempo de ovulação entre os grupos.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.