Microorganisms are responsible for degrading the raw leachate generated in sanitary landfills, extracting the soluble fraction of the landfill waste and biotransforming organic matter and toxic residues. To increase our understanding of these highly contaminated ecosystems, we analyzed the microbial communities in the leachate produced by three landfill cells of different ages. Using high-throughput 454 pyrosequencing of the 16S rRNA gene, we describe the structure of the leachate communities and present their compositional characteristics. All three communities exhibited a high level of abundance but were undersampled, as indicated by the results of the rarefaction analysis. The distribution of the taxonomic operational units (OTUs) was highly skewed, suggesting a community structure with a few dominant members that are key for the degradation process and numerous rare microorganisms, which could act as a resilient microorganism seeder pool. Members of the phylum Firmicutes were dominant in all of the samples, accounting for up to 62% of the bacterial sequences, and their proportion increased with increasing landfill age. Other abundant phyla included Bacteroidetes, Proteobacteria, and Spirochaetes, which together with Firmicutes comprised 90% of the sequences. The data illustrate a microbial community that degrades organic matter in raw leachate in the early stages, before the methanogenic phase takes place. The genera found fit well into the classical pathways of anaerobic digestion processes.
Since the earlier anaerobic treatment systems, the design concepts were improved from classic reactors like septic tanks and anaerobic ponds, to modern high rate reactor configurations like anaerobic filters, UASB, EGSB, fixed film fluidized bed and expanded bed reactors, and others. In this paper, anaerobic reactors are evaluated considering the historical evolution and types of wastewaters. The emphasis is on the potential for application in domestic sewage treatment, particularly in regions with a hot climate. Proper design and operation can result in a high capacity and efficiency of organic matter removal using single anaerobic reactors. Performance comparison of anaerobic treatment systems is presented based mostly on a single but practical parameter, the hydraulic retention time. Combined anaerobic reactor systems as well as combined anaerobic and non-anaerobic systems are also presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.