The alkaline phosphatase (ALP) biocatalysis followed by the in situ enzymatic generation of a visible light responsive nanozyme is coupled to elucidate a novel amplification strategy by enzymatic cascade reaction for versatile biosensing. The enzymatic hydrolysis of o-phosphonoxyphenol (OPP) to catechol (CA) by ALP is allowed to coordinate on the surface of TiO2 nanoparticles (NPs) due to the specificity and high affinity of enediol ligands to Ti(IV). Upon the stimuli by CA generated from ALP, the inert TiO2 NPs is activated, which demonstrates highly efficient oxidase mimicking activity for catalyzing the oxidation of the typical substrate of 3,3',5,5'-tetramethylbenzidine (TMB) under visible light (λ ≥ 400 nm) irradiation utilizing dissolved oxygen as an electron acceptor. On the basis of the cascade reaction of ALP and the nanozyme of CA coordinated TiO2 (TiO2-CA) NPs, we design exquisitely colorimetric biosensors for probing ALP activity and its inhibitor of 2, 4-dichlorophenoxyacetic acid (2,4-DA). Quantitative probing of ALP activity in a wide linear range from 0.01 to 150 U/L with the detection limit of 0.002 U/L is realized, which endows the methodology with sufficiently high sensitivity for potentially practical applications in real samples of human serum (ALP level of 40-190 U/L for adults). In addition, a novel immunoassay protocol by taking mouse IgG as an example is validated using the ALP/nanozyme cascade amplification reaction as the signal transducer. A low detection limit of 2.0 pg/mL is attained for mouse IgG, which is 4500-fold lower than that of the standard enzyme-linked immuno-sorbent assay (ELISA) kit. Although only mouse IgG is used as a proof-of-concept in our experiment, we believe that this approach is generalizable to be readily extended to other ELISA systems. This methodology opens a new horizon for amplified and versatile biosensing including probing ALP activity and following ALP-based ELISA immunoassays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.