Zinc oxide nanoparticles (ZnONPs) are the top candidate in the field of biological applications because of their high surface area and excellent catalytic activities. In the present study, the cyanobacteria-mediated biosynthesis of zinc oxide NPs using Nostoc sp. extract as a stabilizing, chelating, and reducing agent is reported. ZnONPs were biologically synthesized using an eco-friendly and simple technique with a minimal reaction time and calcination temperature. Various methods, including X-ray diffraction (XRD), ultraviolet spectroscopy (UV), Fourier transform infrared (FTIR), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX) were used to characterize the biosynthesized zinc oxide NPs. XRD analysis depicted the crystalline form of zinc oxide NPs, and the Scherrer equation determined a mean crystalline size of ~28.21 nm. The SEM results reveal the spherical shape of the biosynthesized nanoparticles. Various functional groups were involved in the capping and stabilization of the zinc oxide NPs, which were confirmed by FTIR analysis. The zinc oxide NPs showed strong UV-vis absorption at 340 nm. Multiple in vitro biological applications showed significant therapeutic potential for zinc oxide NPs. Potential antimicrobial assays were reported for zinc oxide NPs via the disc-diffusion method and food poisoning method, respectively. All other activities mentioned below are described with the concentration and IC50 values. Biocompatibility with human erythrocytes and macrophages (IC50: 433 µg/mL, IC50 > 323 µg/mL) and cytotoxic properties using brine shrimps (IC50: 11.15 µg/mL) and Leishmania tropics (Amastigotes IC50: 43.14 µg mL−1 and Promastigotes IC50: 14.02 µg mL−1) were determined. Enzyme inhibition assays (protein kinase and alpha amylase) were performed and showed strong potential. Free radical scavenging tests showed strong antioxidant capacities. These results indicate that zinc oxide NPs synthesized by Nostoc sp. have strong biological applications and are promising candidates for clinical development.
Cadmium (Cd) and lead (Pb) are global environmental pollutants. In this study, Nostoc sp. MK-11 was used as an environmentally safe, economical, and efficient biosorbent for the removal of Cd and Pb ions from synthetic aqueous solutions. Nostoc sp. MK-11 was identified on a morphological and molecular basis using light microscopic, 16S rRNA sequences and phylogenetic analysis. Batch experiments were performed to determine the most significant factors for the removal of Cd and Pb ions from the synthetic aqueous solutions using dry Nostoc sp. MK1 biomass. The results indicated that the maximum biosorption of Pb and Cd ions was found under the conditions of 1 g of dry Nostoc sp. MK-11 biomass, 100 mg/L of initial metal concentrations, and 60 min contact time at pH 4 and 5 for Pb and Cd, respectively. Dry Nostoc sp. MK-11 biomass samples before and after biosorption were characterized using FTIR and SEM. A kinetic study showed that a pseudo second order kinetic model was well fitted rather than the pseudo first order. Three isotherm models Freundlich, Langmuir, and Temkin were used to explain the biosorption isotherms of metal ions by Nostoc sp. MK-11 dry biomass. Langmuir isotherm, which explains the existence of monolayer adsorption, fitted well to the biosorption process. Considering the Langmuir isotherm model, the maximum biosorption capacity (qmax) of Nostoc sp. MK-11 dry biomass was calculated as 75.757 and 83.963 mg g−1 for Cd and Pb, respectively, which showed agreement with the obtained experimental values. Desorption investigations were carried out to evaluate the reusability of the biomass and the recovery of the metal ions. It was found that the desorption of Cd and Pb was above 90%. The dry biomass of Nostoc sp. MK-11 was proven to be efficient and cost-effective for removing Cd and especially Pb metal ions from the aqueous solutions, and the process is eco-friendly, feasible, and reliable.
The current study aimed to investigate the viability and characteristics of Scenedesmus sp. as an adsorbent system to remove lead (Pb) and cadmium (Cd) through an in vitro exposure to a metal solution. In batch sorption experiments, the effects of pH, contact time, initial concentration of metal ions, and sorbent dosage on the adsorption process were trialed. The ideal biosorption conditions for each of the two metals were recorded. The biosorption process was quick, and the equilibrium times for the above-mentioned metals were recorded as 90 and 60 min, with removal percentages of 85% and 83%, respectively. The point zero charge of algal biomass was 4.5, which indicates a negative charge on the surface of the biosorbent. The model-based assessment of the biosorption process was revealed to have followed pseudo-second-order kinetics. The adsorption isotherms for lead and cadmium achieved a best fit with the Langmuir model, with monolayer biosorption capacities of 102 and 128 mg g−1, respectively. The desorption of both metals achieved more than 70% by using HCl. The FT-IR revealed the presence of hydroxyl and amine groups on the surface of the adsorbent that are involved in the biosorption process, and morphological changes were assessed by SEM. Hence, Scenedesmus sp. from a Himalayan provenance showed considerable promise as an alternate sorbent for the treatment of heavy-metal-contaminated wastewater.
Industrialization, urbanization, and natural processes have potentially accelerated the pace and level of heavy metals in the aquatic environment. Recently, modern strategies for heavy metal treatment in wastewater have received the specific attention of the scientific community. The present study aimed to assess the amorphous biomass of Desmodesmus sp. as a low-cost adsorbent to remove the cadmium (Cd) and lead (Pb) from aqueous solutions. It involved the optimization of pH, contact time, initial concentration of metal ions, and the dosage of biosorbent. Data collation revealed that an optimum contact time for both metals was 60 min, with an adsorption capacity of 63% for Cd and 66% for Pb. Different models were applied to the equilibrium data. The pseudo 2nd order described the best adsorption of Cd and Pb. The equilibrium data were computed with various isotherms. Langmuir isotherms better suit the adsorption of the above-mentioned metals. Hence, the maximum adsorption capacity of Desmodesmus sp. for Cd and Pb was 64.1 and 62.5 mg/g, respectively. The mechanism of biosorption was validated through a comparative FT-IR and Scanning Electron Microscopy of raw and metal-loaded algal biomass based on cell morphological changes. In order to study the reusability of adsorbent, adsorption-desorption of Cd and Pb ions was repeated three times using HCl. These results did not noticeably change in adsorption capacity during the three cycles. Using HCl (0.1 M), desorption of both metals was achieved up to 90% in three cycles. This work presented a long-term bioremediation approach for heavy metal pollutants in wastewater. This research could be seen as an interdisciplinary approach to large-scale heavy metal remediation. In addition, growing microalgae in wastewater produces animal feed and biodiesel. When compared to other conventional methods for environmental remediation and the manufacture of valuable products, the use of microalgae is a more efficient and cost-effective method.
G reen algae are one of the most diverse groups of algae, with at least 7000 species (Nelson and Garcia-Pichel, 2021). Green algae are characterized by several distinct features including filaments, colonies, branched, motile, non-motile, and bladelike thallus (Leliaert et al., 2012). Chloroplast contained chlorophyll a, b and accessory pigments including carotenes and xanthophylls which are surrounded by double membrane with thylakoid arranged in lamellae. Pyrenoid are present and embedded in the chloroplast and surrounded by starch, the primary reserve carbohydrate (Forjan et al., 2015). Green algae have variations in their morphology ranging from microscopic flagellated unicells to complex macroscopic thalli with varying degrees of morphological differentiation. They are a paraphyletic group from a taxonomic standpoint since they have a common ancestor with plants and have Abstract | The current study was carried out to isolate, identify and characterized fresh water green algae species from ecologically diverse habitats of Tehsil Gujar Khan, District Rawalpindi. A microscopic image data was used to identify algal species. A total of 30 species were recorded that belonged to 4 orders, 11 families, and 14 genera. Clamydomonas reinardtii, Acutodesmus obliquus and Cosmarium isthmocondrum are new record from Pakistan. Among identified taxa, Scenedesmus was the dominant genus with 8 species and their contribution was 26.6%. The 2 nd most dominant genus was Cosmarium with 6 species and their contribution was 20%. The other genera Chlorococcum, Ankistrodesmus, Coelastrum, and Closterium were (6.6%). Some genera represented only one (3.3%) species that were Chlamydomonas, Eudorina, Tetraspora, Chlorella, Westella, Pediastrum, Acutodesmus, and Stigeoclonium. Hence, the current study reveals that Gujar Khan, District Rawalpindi is a rich source of green algae and an ideal place for their cultivation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.