Cadmium (Cd) and lead (Pb) are global environmental pollutants. In this study, Nostoc sp. MK-11 was used as an environmentally safe, economical, and efficient biosorbent for the removal of Cd and Pb ions from synthetic aqueous solutions. Nostoc sp. MK-11 was identified on a morphological and molecular basis using light microscopic, 16S rRNA sequences and phylogenetic analysis. Batch experiments were performed to determine the most significant factors for the removal of Cd and Pb ions from the synthetic aqueous solutions using dry Nostoc sp. MK1 biomass. The results indicated that the maximum biosorption of Pb and Cd ions was found under the conditions of 1 g of dry Nostoc sp. MK-11 biomass, 100 mg/L of initial metal concentrations, and 60 min contact time at pH 4 and 5 for Pb and Cd, respectively. Dry Nostoc sp. MK-11 biomass samples before and after biosorption were characterized using FTIR and SEM. A kinetic study showed that a pseudo second order kinetic model was well fitted rather than the pseudo first order. Three isotherm models Freundlich, Langmuir, and Temkin were used to explain the biosorption isotherms of metal ions by Nostoc sp. MK-11 dry biomass. Langmuir isotherm, which explains the existence of monolayer adsorption, fitted well to the biosorption process. Considering the Langmuir isotherm model, the maximum biosorption capacity (qmax) of Nostoc sp. MK-11 dry biomass was calculated as 75.757 and 83.963 mg g−1 for Cd and Pb, respectively, which showed agreement with the obtained experimental values. Desorption investigations were carried out to evaluate the reusability of the biomass and the recovery of the metal ions. It was found that the desorption of Cd and Pb was above 90%. The dry biomass of Nostoc sp. MK-11 was proven to be efficient and cost-effective for removing Cd and especially Pb metal ions from the aqueous solutions, and the process is eco-friendly, feasible, and reliable.
Punjab is the leading province of Pakistan in the production of bovine milk and its consumption. Rapid industrialization, high energy demand and production of waste have increased the risk of PCB toxicity in the environment. This research work was designed to assess human dietary exposure of polychlorinated biphenyls (∑PCBs17 congeners) through ingestion of buffalo and cow's milk from eight main districts of Punjab, Pakistan. The average concentration of ∑DL-PCBs (8.74 ng g -1 and 14.60 ng g -1 ) and ∑I-PCBs (11.54 ng g -1 and 18.68 ng g -1 ) in buffalo and cow milk samples were analyzed respectively. The PCB 156 was predominantly high congener found in both buffalo (2.84 ng g -1 ) and cow milk (2.86 ng g -1 ). It was found that the highest PCBs in bovine milk samples were observed in close vicinities of urban and industrial areas. The estimated daily consumptions of DL-PCBs and I-PCBs, from buffalo and cow milk, were below the acceptable daily intake for both adults and children. Moreover, Hazard Quotients (HQ) of ∑PCBs17 congeners value were less than 1.0 in adults and greater in the case of children reflecting the high chances of cancer risk. Furthermore, comprehensive monitoring for childhood cancer is recommended to establish the relationship in future studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.