In this study, we describe the magnetic and structural properties and cytotoxicity of drug delivery composite (DDC) consisting of hexagonally ordered mesoporous silica, iron oxide magnetic nanoparticles (Fe2O3), and the drug naproxen (Napro). The nonsteroidal anti-inflammatory drug (NSAID) naproxen was adsorbed into the pores of MCM-41 silica after the ultra-small superparamagnetic iron oxide nanoparticles (USPIONs) encapsulation. Our results confirm the suppression of the Brownian relaxation process caused by a “gripping effect” since the rotation of the whole particle encapsulated in the porous system of mesoporous silica was disabled. This behavior was observed for the first time, to the best of our knowledge. Therefore, the dominant relaxation mechanism in powder and liquid form is the Néel process when the rotation of the nanoparticle’s magnetic moment is responsible for the relaxation. The in vitro cytotoxicity tests were performed using human glioma U87 MG cells, and the moderate manifestation of cell death, although at high concentrations of studied systems, was observed with fluorescent labeling by AnnexinV/FITC. All our results indicate that the as-prepared MCM-41/Napro/Fe2O3 composite has a potential application as a drug nanocarrier for magnetic-targeted drug delivery.
Magnetic-bead separation or purification serves as a technique for effective isolation of biomolecules. In presented work we prepared and characterized core-shell magnetic nanoparticle samples consisted of Fe3O4 core coated with SiO2 shell. Samples were subsequently coated with ligands MPTMS (3-(mercaptopropyl)trimethoxysilane), CPTMS (3-(chloropropyl)trimethoxysilane) and MMSP (3-(trimethoxysilyl)propyl methacrylate) with aim to increase the number of active centers for specific binding with RNA. Such samples were further investigated for their magnetic properties, size, and morphology. Magnetic properties were studied in DC field up to 5 T in temperature range 5 – 300 K. Size and morphology were determined from SEM micrographs and elemental compositions of the samples were investigated using EDX analysis. Modification of nanoparticle surface with different ligands leads to modification of active centers on the SiO2 surface on which the DNA and RNA molecules can be bounded. It also causes the change in magnetic and structural properties of nanoparticles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.