Land use and land cover (LULC) change analysis is a systematic technique that aids in the comprehension of physical and non-physical interaction with the natural habitat and the pursuit of environmental sustainability. Research regarding LULC’s spatiotemporal changing patterns and the simulation of future scenarios offers a complete view of present and future development possibilities. To simulate the spatiotemporal change transition potential and future LULC simulation, we utilized multi-temporal remotely sensed big data from 1990 to 2020 with a 10-year interval. Independent variables (DEM, slope, and distance from roads) and an integrated CA-ANN methodology within the MOLUSCE plugin of QGIS were utilized. The findings reveal that physical and socioeconomic driving variables have a substantial effect on the patterns of the terrain. In the last three decades, the study area had a significant rise in impervious surface from 10.48% to 26.91%, as well as a minor increase in water from 1.30% to 1.67%. As a result, forest cover decreased from 12.60% to 8.74%, green space decreased from 26.34% to 16.57%, and barren land decreased from 49.28% to 46.11%. Additionally, the predictions (2030–2050) support the increasing trend towards impervious surface at the expense of significant quantities of forest and green space.
Peu étudiée, la nuit urbaine est pourtant riche de multiples activités économiques, sociales ou culturelles. Les différences entre la ville qui dort et celle qui veille se transforment au fil du temps. La conquête de la nuit par le jour, à l'instar d'une nouvelle frontière, est un analyseur des tensions sociales qui traversent la ville.
Population density and distribution of services represents the growth and demographic shift of the cities. For urban planners, population density and check-in behavior in space and time are vital factors for planning and development of sustainable cities. Location-based social network (LBSN) data seems to be a complement to many traditional methods (i.e., survey, census) and is used to study check-in behavior, human mobility, activity analysis, and social issues within a city. This check-in phenomenon of sharing location, activities, and time by users has encouraged this research on gender difference and frequency of using LBSN. Therefore, in this study, we investigate the check-in behavior of Chinese microblog Sina Weibo (referred as "Weibo") in 10 districts of Shanghai, China, for which we observe the gender difference and their frequency of use over a period. The mentioned districts were spatially analyzed for check-in spots by kernel density estimation (KDE) using ArcGIS. Furthermore, our results reveal that female users have a high rate of social media use, and significant difference is observed in check-in behavior during weekdays and weekends in the studied districts of Shanghai. Increase in check-ins is observed during the night as compared to the morning. From the results, it can be assumed that LBSN data can be helpful to observe gender difference.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.