Convection and turbulence in core-collapse supernovae (CCSNe) are inherently three-dimensional (3D) in nature. However, 3D simulations of CCSNe are computationally demanding. Thus, it is valuable to modify simulations in spherical symmetry to incorporate 3D effects using some parametric model. In this paper, we report on the formulation and implementation of general relativistic neutrino-driven turbulent convection in the spherically symmetric core-collapse supernova code GR1D. This is based upon the recently proposed method of Simulated Turbulence in Reduced Dimensionality (STIR) in Newtonian simulations from Couch et al. (2020). When the parameters of this model are calibrated to 3D simulations, we find that our general relativistic formulation of STIR requires larger turbulent eddies to achieve a shock evolution similar to the original STIR model. We also find that general relativity may alter the correspondence between progenitor mass and successful versus failed explosions.
We present a simple criterion to predict the explodability of massive stars based on the density and entropy profiles before collapse. If a pronounced density jump is present near the Si/Si–O interface, the star will likely explode. We develop a quantitative criterion by using ∼1300 1D simulations where ν-driven turbulence is included via time-dependent mixing-length theory. This criterion correctly identifies the outcome of the supernova more than 90% of the time. We also find no difference in how this criterion performs on two different sets of progenitors, evolved using two different stellar evolution codes: FRANEC and KEPLER. The explodability as a function of mass of the two sets of progenitors is very different, showing: (i) that uncertainties in the stellar evolution prescriptions influence the predictions of supernova explosions; (ii) the most important properties of the pre-collapse progenitor that influence the explodability are its density and entropy profiles. We highlight the importance that ν-driven turbulence plays in the explosion by comparing our results to previous works.
The nuclear equation of state (EOS) is an important component in the evolution of core-collapse supernovae. In this paper we make a survey of various EOSs in the literature and analyze their effect on spherical core-collapse models in which the effects of three-dimensional turbulence is modeled by a general relativistic formulation of Supernova Turbulence In Reduced-dimensionality (STIR). We show that the viability of the explosion is quite EOS dependent and that it best correlates with the early-time interior entropy density of the proto–neutron star. We check that this result is not progenitor dependent, although the lowest-mass progenitors show different explosion properties, due to the different pre-collapse nuclear composition. Larger central entropies also induce more vigorous proto–neutron star convection in our one-dimensional turbulence model, as well as a wider convective layer.
We present a simple criterion to predict the explodability of massive stars based on the density and entropy profiles before collapse. If a pronounced density jump is present near the Si/O interface, the star will likely explode. We develop a quantitative criterion by using ∼ 400 1D simulations where νdriven turbulence is included via mixing length theory. This criterion correctly identifies the outcome of the supernova ∼ 95% of the time. We also find no difference in how this criterion performs on two different sets of progenitors, evolved using two different stellar evolution codes: FRANEC and KE-PLER. The explodability as a function of mass of the two sets of progenitors is very different, showing: (i) that uncertainties in the stellar evolution prescriptions influence the predictions of supernova explosions; (ii) the most important properties of the pre-collapse progenitor that influence the explodability are its density and entropy profiles. We highlight the importance that ν-driven turbulence plays in the explosion by comparing our results to previous works.
We review the computation of and associated uncertainties in the current understanding of the relic neutrino background due to core-collapse supernovae, black hole formation and neutron star merger events. We consider the current status of uncertainties due to the nuclear equation of state (EoS), the progenitor masses, the source supernova neutrino spectrum, the cosmological star formation rate, the stellar initial mass function, neutrino oscillations, and neutrino self-interactions. We summarize the current viability of future neutrino detectors to distinguish the nuclear EoS and the temperature of supernova neutrinos via the detected relic supernova neutrino spectrum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.