Background. Olfactory dysfunction might unveil the association between ageing and frailty, as it is associated with declining cognitive function, depression, reduced physical performance, reduced dietary intake, and mortality; all these conditions are characterized by increased levels of inflammatory parameters. The present study is aimed at evaluating the association between olfactory dysfunction, frailty, and mortality and whether such association might be mediated by inflammation. Methods. We analysed data of 1035 participants aged 65+ enrolled in the “InCHIANTI” study. Olfactory function was tested by the recognition of the smells of coffee, mint, and air. Olfactory dysfunction was defined as lack of recognition of at least two smells. Considering the items “shrinking,” “exhaustion,” “sedentariness,” “slowness,” and “weakness” included in the Fried definition, frailty was defined as the presence of at least three criteria, prefrailty of one or two, and robustness of none. Serum interleukin-6 (IL-6) was measured in duplicate by high-sensitivity enzyme-linked immunosorbent assays. Logistic regression was adopted to assess the association of frailty with olfactory function, as well as with the increasing number of olfactory deficits. Cox regression was used to test the association between olfactory dysfunction and 9-year survival. Results. Olfactory dysfunction was associated with frailty, after adjusting (OR 1.94, 95% CI=1.07-3.51; P=.028); analysis of the interaction term indicated that the association varied according to interleukin-6 levels (P for interaction=.005). Increasing levels of olfactory dysfunction were associated with increasing probability of being frail. Also, olfactory dysfunction was associated with reduced survival (HR 1.52, 95% CI=1.16-1.98; P=.002); this association varied according to the presence of frailty (P for interaction=.017) and prefrailty status (P for interaction=.046), as well as increased interleukin-6 levels (P for interaction = .011). Conclusions. Impairment of olfactory function might represent a marker of frailty, prefrailty, and consequently reduced survival in an advanced age. Inflammation might represent the possible link between these conditions.
Abstr act: Complex molecular and cellular mechanisms are involved in the pathway of liver fibrosis. Activation and transformation of hepatic stellate cells (HSCs) are considered the two main reasons for the cause and development of liver fibrosis. The peroxisome proliferator-activated receptors (PPARs) belonging to the family of ligand-activated transcription factors play a key role in liver homeostasis, regulating adipogenesis and inhibiting fibrogenesis in HSCs. Normal transcriptional function of PPARs contributes to maintain HSCs in quiescent phase. A reduced expression of PPARs in HSCs greatly induces a progression of liver fibrosis and an increased production of collagen. Here, we discuss role and function of PPARs and we take into consideration molecular factors able to reduce PPARs activity in HSCs. Finally, although further validations are needed, we illustrate novel strategies available from in vitro and animal studies on how some PPARs-agonists have been proved effective as antifibrotic substances in liver disease.
BackgroundPolyunsaturated fatty acids (PUFAs) are members of the family of fatty acids and are included in the diet. Particularly, western diet is usually low in n-3 PUFAs and high in n-6 PUFAs. PUFAs play a central role in the homeostasis of immune system: n-6 PUFAs have predominantly pro-inflammatory features, while n-3 PUFAs seem to exert anti-inflammatory and pro-resolving properties. Rheumatoid arthritis (RA) is a chronic inflammatory arthritis in which many inflammatory pathways contribute to joint and systemic inflammation, disease activity, and structural damage. Research on PUFAs could represent an important opportunity to better understand the pathogenesis and to improve the management of RA patients.MethodsWe searched PubMed, Embase, EBSCO-Medline, Cochrane Central Register of Controlled Trials (CENTRAL), CNKI and Wanfang to identify primary research reporting the role of n-3 PUFAs in rheumatoid arthritis both in humans and in animal models up to the end of March 2017.ResultsData from animal models allows to hypothesize that n-3 PUFAs supplementation may represent an interesting perspective in future research as much in prevention as in treating RA. In humans, several case-control and prospective cohort studies suggest that a high content of n-3 PUFAs in the diet could have a protective role for incident RA in subjects at risk. Moreover, n-3 PUFAs supplementation has been assessed as a valuable therapeutic option also for patients with RA, particularly in order to improve the pain symptoms, the tender joint count, the duration of morning stiffness and the frequency of NSAIDs assumption.Conclusionsn-3 PUFAs supplementation could represent a promising therapeutic option to better control many features of RA. The impact of n-3 PUFAs on radiographic progression and synovial histopathology has not been yet evaluated, as well as their role in early arthritis and the combination with biologics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.