The objective of the present work is the development of a closed-loop individual cylinder spark advance control strategy that allows maximizing torque production while keeping the knocking phenomenon at levels considered safe for the engine components. The research activity has consisted of several phases: the first one was focused on the analysis of the relationship between knocking level and indicated mean effective pressure. The main result of this preliminary phase is a methodology for identifying target values of the chosen in-cylinder pressure based knocking index. A subsequent phase of the work has been devoted to a correlation analysis between pressure-based knocking indexes and knocking indexes obtained by processing other combustion-related signals (engine block vibration and ion current), showing that the ion current based system that has been developed allows reaching high correlation levels. Finally, in order to achieve the target knocking levels, the spark advance control strategy proposed here consists of two parallel contributions: a slower, adaptive and statistically-based contribution, and a fast but range-limited term. The process of designing the controller has been particularly fast and cost-effective, due to the development of a specific software environment that allows verifying the performance the controller would achieve when applied to the actual engine. Such structure may be described as a software rapid control prototyping environment, since an experimental database has been used to reproduce in a simulation environment the response of the controlled system (the engine) coupled to the spark advance control system. The proposed control strategy has been successfully implemented on a V12 6.0 liter high performance engine, allowing to maximize output torque while protecting engine components from knock-related damage.
Recent engine development has been mainly driven by increased specific volumetric power and especially by fuel consumption minimization. On the other hand the stringent emission limits require a very fast cold start that can be reached only using tailored catalyst heating strategy.This kind of thermal management is widely used by engine manufactures although it leads to increased fuel consumption. This fuel penalty is usually higher for high power output engines that have a very low load during emission certification cycle leading to very low exhaust gas temperature and, consequently, the need of additional energy to increase the exhaust gas temperature is high.An alternative way to reach a fast light off minimizing fuel consumption increase is the use of an Electrical Heated Catalyst (EHC) that uses mechanical energy from the engine to generate the electrical energy to heat up the catalyst. Following this thermal management strategy the energy input can be tailored according to the component need and the energy loss in the system can be minimized. Moreover, the efficiency of such systems can be further optimized using for example brake energy recuperation or advanced thermal management.The present work describes the different engine management strategies tested by Ferrari to find the best compromise between fuel consumption and emission reduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.