The premotor theory of attention postulates that spatial attention arises from the activation of saccade areas and that the deployment of attention is the consequence of motor programming. Yet attentional and oculomotor processes have been shown to be dissociable at the neuronal level in covert attention tasks. To investigate a potential dissociation at the behavioral level, we instructed human participants to move their eyes (saccade) towards 1 of 2 nearby, competing saccade targets. The spatial distribution of visual attention was determined using oriented visual stimuli presented either at the target locations, between them, or at several other equidistant locations. Results demonstrate that accurate saccades towards one of the targets were associated with presaccadic enhancement of visual sensitivity at the respective saccade endpoint compared to the nonsaccaded target location. In contrast, averaging saccades, landing between the 2 targets, were not associated with attentional facilitation at the saccade endpoint. Rather, attention before averaging saccades was equally deployed at the 2 target locations. Taken together, our results reveal that visual attention is not obligatorily coupled to the endpoint of a subsequent saccade. Rather, our results suggest that the oculomotor program depends on the state of attentional selection before saccade onset and that saccade averaging arises from unresolved attentional selection.
Saccadic eye movements are typically preceded by selective shifts of visual attention. Recent evidence, however, suggests that oculomotor selection can occur in the absence of attentional selection when saccades erroneously land in between nearby competing objects (saccade averaging). This study combined a saccade task with a visual discrimination task to investigate saccade target selection during episodes of competition between a saccade target and a nearby distractor. We manipulated the spatial predictability of target and distractor locations and asked participants to execute saccades upon variably delayed go-signals. This allowed us to systematically investigate the capacity to exert top-down eye movement control (as reflected in saccade endpoints) based on the spatiotemporal dynamics of visual attention during movement preparation (measured as visual sensitivity). Our data demonstrate that the predictability of target and distractor locations, despite not affecting the deployment of visual attention prior to movement preparation, largely improved the accuracy of short-latency saccades. Under spatial uncertainty, a short go-signal delay likewise enhanced saccade accuracy substantially, which was associated with a more selective deployment of attentional resources to the saccade target. Moreover, we observed a systematic relationship between the deployment of visual attention and saccade accuracy, with visual discrimination performance being significantly enhanced at the saccade target relative to the distractor only before the execution of saccades accurately landing at the saccade target. Our results provide novel insights linking top-down eye movement control to the operation of selective visual attention during movement preparation.
Voluntary attentional control is the ability to selectively focus on a subset of visual information in the presence of other competing stimuli–a marker of cognitive control enabling flexible, goal-driven behavior. To test its robustness, we contrasted attentional control with the most common source of attentional orienting in daily life: attention shifts prior to goal-directed eye and hand movements. In a multi-tasking paradigm, human participants attended at a location while planning eye or hand movements elsewhere. Voluntary attentional control suffered with every simultaneous action plan, even under reduced task difficulty and memory load–factors known to interfere with attentional control. Furthermore, the performance cost was limited to voluntary attention: We observed simultaneous attention benefits at two movement targets without attentional competition between them. This demonstrates that the visual system allows for the concurrent representation of multiple attentional foci. Since attentional control is extremely fragile and dominated by premotor attention shifts, we propose that action-driven selection plays the superordinate role for visual selection.
The premotor theory of attention postulates that spatial attention arises from the activation of saccade areas and that the deployment of attention is the consequence of motor programming. Yet, attentional and oculomotor processes have been shown to be dissociable at the neuronal level in covert attention tasks. To investigate a potential dissociation at the behavioral level, we instructed human participants to saccade towards one of two nearby, competing saccade cues. The spatial distribution of visual attention was determined using oriented Gabor stimuli presented either at the cue locations, between them or at several other equidistant locations.Results demonstrate that accurate saccades towards one of the cues were associated with presaccadic enhancement of visual sensitivity at the respective saccade endpoint compared to the non-saccaded cue location. In contrast, averaging saccades, landing between the two cues, were not associated with attentional facilitation at the saccade endpoint, ruling out an obligatory coupling of attentional deployment to the oculomotor program. Rather, attention before averaging saccades was equally distributed to the two cued locations. Taken together, our results reveal a spatial dissociation of visual attention and saccade programming. They suggest that the oculomotor program depends on the state of attentional selection before saccade onset, and that saccade averaging arises from unresolved attentional selection. KeywordsSaccade, attention, averaging saccade, premotor theory of attention peer-reviewed)
Voluntary attentional control is the ability to selectively focus on a subset of visual information in the presence of other competing stimuli. While it is well established that this capability is a marker of cognitive control that allows for flexible, goal-driven behavior, it is still an open question how robust it is. In this study we contrasted voluntary attentional control with the most frequent source of automatic, involuntary attentional orienting in daily life: shifts of attention prior to goal-directed eye and hand movements. In a multi-tasking paradigm, we asked participants to attend at a location while planning eye or hand movements elsewhere. We observed that voluntary attentional control suffered with every simultaneous action plan. Crucially, this impairment occurred even when we reduced task difficulty and memory load, factors known to interfere with attentional control. Furthermore, the performance cost was limited to voluntary attention. We observed simultaneous attention benefits at two movement targets without attentional competition between them. This demonstrates that the visual system allows for the concurrent representation of multiple attentional foci. It further reveals that voluntary attentional control is extremely fragile and dominated by automatic, premotor shifts of attention. We propose that action-driven selection disrupts voluntary attention and plays a superordinate role for visual selection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.