O objetivo deste trabalho foi identificar a importância de variáveis econômico-financeiras para a ocorrência de fusões e aquisições (F&A) no setor bancário brasileiro após 20 anos consolidados do plano-real, período compreendido entre os anos de 1995 e 2015. Para atingir o objetivo proposto, foram utilizadas as técnicas de análise discriminante, regressão logística, redes neurais e um modelo híbrido. De maneira geral observou-se que os indicadores de qualidade dos ativos, rentabilidade, liquidez, eficiência e tamanho da firma foram importantes na discriminação dos grupos de bancos estudados (adquirentes e adquiridos) e foi possível constatar que bancos com maiores indicadores apresentam maior probabilidade se tornarem adquirentes. Com relação aos métodos empregados pode-se afirmar que os modelos apresentaram aderência aos dados estudados, todavia, ressalta-se a superioridade das redes neurais artificiais em sua forma tradicional e híbrida. Por fim, salienta-se a importância de trabalhos como este em mercados emergentes, sendo que modelos de previsão podem trazer mais segurança e amenizar os riscos assumidos pelos investidores. Além disso, fornecem informações úteis para a tomada de decisão empresarial, uma vez que elencam variáveis importantes para a classificação de empresas alvo e não alvo de F&A.
Resumo. O matemático Zadeh [1] introduziu a teoria fuzzy que nos permite a manipulação de dados imprecisos e incertos. A lógica fuzzy, também conhecida como lógica nebulosa ou lógica difusa, é uma ferramenta essencial na tomada de decisão, tendo como finalidade, transformar expressões imprecisas em valores numéricos. Considerando uma extensão da lógica clássica, na quais valores intermediários entre verdadeiro e falso são representados, a lógica fuzzy propõe um tratamento matemático a certos termos linguísticos subjetivos, como aproximadamente, em torno de médio, alto, dentre outros.A lógica fuzzy se fundamenta na existência de conjuntos denominados de conjuntos fuzzy, que podem ser representados por funções de pertinência. Lógica fuzzy se destacou devido a sua grande capacidade no tratamento de sistemas especialistas que incorporam imprecisão em algumas de suas variáveis de estudo, surgindo os sistemas de regras fuzzy. A teoria dos conjuntos fuzzy tem sido utilizada em várias áreas, como em análise de dados, sistemas especialistas, controle e otimização, biomedicina, biomatemática e estatística. Como por exemplo, na área de administração, a lógica fuzzy pode ser utilizada para auxiliar um especialista a tomar uma decisão quanto ao porte de uma empresa, e em ciências atuariais, auxiliar uma seguradora na subscrição de um determinado seguro.
Multivariate options are adequate tools for multi-asset risk management. The pricing models derived from the pioneer Black and Scholes method under the multivariate case consider that the asset-object prices follow a Brownian geometric motion. However, the construction of such methods imposes some unrealistic constraints on the process of fair option calculation, such as constant volatility over the maturity time and linear correlation between the assets. Therefore, this paper aims to price and analyze the fair price behavior of the call-on-max (bivariate) option considering marginal heteroscedastic models with dependence structure modeled via copulas. Concerning inference, we adopt a Bayesian perspective and computationally intensive methods based on Monte Carlo simulations via Markov Chain (MCMC). A simulation study examines the bias, and the root mean squared errors of the posterior means for the parameters. Real stocks prices of Brazilian banks illustrate the approach. For the proposed method is verified the effects of strike and dependence structure on the fair price of the option. The results show that the prices obtained by our heteroscedastic model approach and copulas differ substantially from the prices obtained by the model derived from Black and Scholes. Empirical results are presented to argue the advantages of our strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.