BackgroundThe cultivar Micro-Tom (MT) is regarded as a model system for tomato genetics due to its short life cycle and miniature size. However, efforts to improve tomato genetic transformation have led to protocols dependent on the costly hormone zeatin, combined with an excessive number of steps.ResultsHere we report the development of a MT near-isogenic genotype harboring the allele Rg1 (MT-Rg1), which greatly improves tomato in vitro regeneration. Regeneration was further improved in MT by including a two-day incubation of cotyledonary explants onto medium containing 0.4 μM 1-naphthaleneacetic acid (NAA) before cytokinin treatment. Both strategies allowed the use of 5 μM 6-benzylaminopurine (BAP), a cytokinin 100 times less expensive than zeatin. The use of MT-Rg1 and NAA pre-incubation, followed by BAP regeneration, resulted in high transformation frequencies (near 40%), in a shorter protocol with fewer steps, spanning approximately 40 days from Agrobacterium infection to transgenic plant acclimatization.ConclusionsThe genetic resource and the protocol presented here represent invaluable tools for routine gene expression manipulation and high throughput functional genomics by insertional mutagenesis in tomato.
Tropical and subtropical soils are usually acidic and have high concentrations of aluminum (Al). Aluminum toxicity in plants is caused by the high affinity of the Al cation for cell walls, membranes, and metabolites. In this study, the response of the antioxidant-enzymatic system to Al was examined in two tomato genotypes: Solanum lycopersicum var. esculentum (Calabash Rouge) and Solanum lycopersicum var. cerasiforme (CNPH 0082) grown in tropical soils with varying levels of Al. Plant growth; activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GPOX), and glutathione reductase (GR) enzymes; stress-indicating compounds (malondialdehyde (MDA) and hydrogen peroxide); and morphology (root length and surface area) were analyzed. Increased levels of Al in soils were correlated with reduced shoot and root biomass and with reduced root length and surface area. Calabash Rouge exhibited low Al concentrations and increased growth in soils with the highest levels of Al. Plants grown in soils with high availability of Al exhibited higher levels of stress indicators (MDA and hydrogen peroxide) and higher enzyme activity (CAT, APX, GPOX, and GR). Calabash Rouge absorbed less Al from soils than CNPH 0082, which suggests that the genotype may possess mechanisms for Al tolerance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.