This work aimed to compare methods for the formation of complexes of bixin and curcumin with β-cyclodextrin (β-CD) and to evaluate the stability of the complexes formed by these methods and their food applications. The stoichiometric relationship between curcumin and β-CD was 1:2 and that between bixin and β-CD was 1:1. Curcumin-β-CD and bixin-β-CD complexes formed by kneading, coprecipitation, and simple mixing were evaluated by differential scanning calorimetry (DSC), thermogravimetry analysis (TGA), or nuclear magnetic resonance (NMR-H). For both curcumin and bixin, the best method of complexation was coprecipitation. Complexation of colorants with β-CD promoted an intensification of color and increased water solubility; however, stabilization in the presence of light occurred only for bixin. Application of curcumin-β-CD in cheese and yogurt and bixin-β-CD in the curd did not alter the initial characteristics of the products, which were sensorialy well accepted. Therefore, the complexation of these natural colorants with β-CD favors their use in low-fat foods, broadening the field of industrial application.
Biodegradation of a mixture of PAHs was assessed in forest soil microcosms performed either without or with bioaugmentation using individual fungi and bacterial and a fungal consortia. Respiratory activity, metabolic intermediates and extent of PAH degradation were determined. In all microcosms the low molecular weight PAH's naphthalene, phenanthrene and anthracene, showed a rapid initial rate of removal. However, bioaugmentation did not significantly affect the biodegradation efficiency for these compounds. Significantly slower degradation rates were demonstrated for the high molecular weight PAH's pyrene, benz[a]anthracene and benz[a]pyrene. Bioaugmentation did not improve the rate or extent of PAH degradation, except in the case of Aspergillus sp. Respiratory activity was determined by CO(2) evolution and correlated roughly with the rate and timing of PAH removal. This indicated that the PAHs were being used as an energy source. The native microbiota responded rapidly to the addition of the PAHs and demonstrated the ability to degrade all of the PAHs added to the soil, indicating their ability to remediate PAH-contaminated soils.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.