The primary objective of this study is to determine the interphase behaviour of a thermoset epoxy resin that is commercially used for carbon fibre–reinforced composite materials in aerospace structures and a suitable thermoplastic material that can be used as a boundary layer. The thermoplastic boundary layer will be used for welding purposes to join structural components with a fraction of the effort compared to conventional gluing processes. In this study, the interphase formation of an epoxy resin with several thermoplastic materials, namely, polyetheretherketone, polyvinylidenfluoride, polyphenylensulfide and polyetherimide (PEI), is studied via hot-stage microscope experiments. Based on this study, PEI was selected, and a detailed study was performed to determine the dependency of dissolution, diffusion and phase separation mechanisms under various isothermal conditions. Additionally, the welding behaviour was investigated by a resistance welding rig whereby the process parameters were statistically varied to optimize the lap shear strength. The results of this study will enable a statement about the interphase development, the morphology and the mechanical properties which is a key element of fully understanding the process.
This paper describes the application of poly(ether-block-amide) polymers, so-called Pebax, in fused filament fabrication (FFF). Pebax® is a thermoplastic elastomer (TPE), a copolymer based on rigid polyamide and soft polyether blocks. By variation of the blocks, unique properties such as soft or rigid behaviour are tailored without additional additives and plasticisers. Pebax®Rnew® polyamide blocks are bio-based and made from castor beans that allow the design of sustainable applications. In this study, two types of Pebax were selected, processing parameters were characterised, filaments were extruded and applied to FFF printing, and the final mechanical characteristics were determined. Both types were suitable for FFF processing with improved process stability due to less shear thinning and good mechanical performance. The connection strength between the grades was also described in the design context for complex parts with tailored soft or hard regions. Combining the two materials in one design is a promising concept, and the adhesion strength is close to the strength in the Z-direction of the flexible Pebax®Rnew®35R53 grade.
This study presents two novel methods for in situ characterization of the reaction-diffusion process during the co-curing of a polyetherimide thermoplastic interlayer with an epoxy-amine thermoset. The first method was based on hot stage experiments using a computer vision point tracker algorithm to detect and trace diffusion fronts, and the second method used space- and time-resolved Raman spectroscopy. Both approaches provided essential information, e.g., type of transport phenomena and diffusion rate. They can also be combined and serve to elucidate phenomena occurring during diffusion up to phase separation of the gradient interphase between the epoxy system and the thermoplastic. Accordingly, it was possible to distinguish reaction-diffusion mechanisms, describe the diffusivity of the present system and evaluate the usability of the above-mentioned methods.
Creating connection points for sandwich-structured composites without losing technical performance is key to realising optimal lightweight structures. The patented LiteWWeight® technology presents cost-effective connections on sandwich panels in a fraction of a few seconds without predrilling. Ultrasonic equipment is used to insert a thermoplastic fastener into the substrate material and partially melt it into the porous internal structure. This creates a highly interlocked connection (connection strength is above 500 N) suitable for semi-structural applications. This study focused on the simulation and experimental validation of this process, mainly on the interaction between the pin and the substrate material during the joining process. The dynamic thermo-mechanical model showed reasonable agreement with experimental methods such as process data, high-speed camera monitoring or computed tomography and allowed the prediction of the connection quality by evaluation of the degree of interlock. The connection strength prediction by the developed model was validated within several various process setups, resulting in a prediction accuracy between 94–99% depending on the setup.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.