Indole compounds, related to the metabolism of tryptophan, constitute an extensive family, and are found in bacteria, plants and animals. Indolic compounds possess significant and complex physiological roles, and especially indole alkaloids have historically constituted a class of major importance in the development of new plant derived drugs. The indole alkaloid alstonine has been identified as the major component of a plant-based remedy, used in Nigeria to treat mental illnesses by traditional psychiatrists. Although it is certainly difficult to compare the very concept of mental disorders in different cultures, the traditional use of alstonine is remarkably compatible with its profile in experimental animals. Even though alstonine in mice models shows a psychopharmacological profile closer to the newer atypical antipsychotic agents, it also shows important differences and what seems to be an exclusive mechanism of action, not entirely clarified at this point. Considering the seemingly unique mode of action of alstonine and that its traditional use can be viewed as indicative of bioavailability and safety, this review focuses on the effects of alstonine in the central nervous system, particularly on its unique profile as an antipsychotic agent. We suggest that a thorough understanding of traditional medical concepts of health and disease in general and traditional medical practices in particular, can lead to true innovation in paradigms of drug action and development. Overall, the study of this unique indole alkaloid may be considered as another example of the richness of medicinal plants and traditional medical systems in the discovery of new prototypic drugs.
N-acetylcysteine (NAC), a glutathione precursor and glutamate modulator, has been shown to possess various clinically relevant psychopharmacological properties. Considering the role of glutamate and oxidative stress in depressive states, the poor effectiveness of antidepressant drugs (ADs) and the benefits of drug combination for treating depression, the aim of this study was to explore the possible benefit of NAC as an add on drug to treat major depression. For that matter we investigated the combination of subeffective and effective doses of NAC with subeffective and effective doses of several ADs in the mice tail suspension test. The key finding of this study is that a subeffective dose of NAC reduced the minimum effective doses of imipramine and escitalopram, but not those of desipramine and bupropion. Moreover, the same subeffective dose of NAC increased the minimum effective dose of fluoxetine in the same model. In view of the advantages associated with using the lowest effective dose of antidepressant, the results of this study suggest the potential of a clinically useful interaction of NAC with imipramine and escitalopram. Further studies are necessary to better characterize the molecular basis of such interactions, as well as to typify the particular drug combinations that would optimize NAC as an alternative for treating depression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.