The rapid development of Information and Communication Technologies (ICT) and high-capacity hardware components make it necessary to achieve a strong integration of automatic systems based on new paradigms on intelligent distributed architectures, where require highly complex supervision and control tasks, due to the generated requirements of the new production systems, the high number of variables to control and the advancement of technologies, especially in industries where continuous processes have been established. In the present work, a distributed hierarchical modular architecture is proposed for a supervision system, based on multi-agent systems (MAS), oriented to the management of processes in the filtration stage of a water purification plant, using a methodology to the implementation of intelligent agents that allow to project, design, verify and validate the system. This methodology is fundamentally based on the use of the Unified Modeling Language (UML) for its projection and Petri nets (PN) for the simulation and validation of properties, which allows to guarantee the modularity, flexibility, and robustness of the proposed system. The architectures of the intelligent agents in the different programmable devices are modeled and simulated to achieve an adequate interaction and collaboration, allowing to reduce the conflicts that may be generated between them. The evaluation of the distributed architecture focuses on the fulfillment of the functional requirements and evaluation metrics, which, through the analysis of the properties of the Petri net, allows to determine the correct operation of the system and its dynamic behavior in the face of unforeseen situations at different levels of automation.
The applications of multi-agent systems (MAS) are growing increasingly in the industrial field due to the advantages inherent to their characteristics and properties, the use of distributed automation architectures, which have satisfactorily solved control problems that its complexity and dynamic behavior have not been properly resolved with other approaches under these conditions, intelligent agents must meet the requirements of current automation systems, such as autonomy, flexibility, reconfiguration, in concurrent and collaborative systems, which traditionally do not have been designed to satisfy these characteristics. In the present work, a distributed architecture is proposed for the design of an intelligent agent in a Human-Machine Interface (HMI) for the supervision of the filtering stage of a water purification plant, characterized by the ability to collaborate with the other agents that make up the entire plant. For the projection and design of the system, the Unified Modeling Language (UML) and Petri nets (PN) are used for the simulation and validation of the system, and the implementation of the agent from macros in C language, starting from a methodology of multi-agent design that is applied in this document. The implementation of the intelligent agent in an HMI associated with multi-agent architecture, which allowed to evaluate its behavior through the analysis of the properties of the PN and experimental tests, demonstrating the correct operation of the device, response times and its dynamic behavior based on of the functional requirements of the water purification plant and comparisons with similar works.
intenta conseguir un mayor cumplimiento del derecho convencional a través de la extensión a todos los órganos nacionales, de la atribución del control de convencionalidad sobre el derecho interno, y a través de la primacía del derecho convencional sobre el nacional. Este proceder de la Corte es consecuencia de una incorrecta manera de entender la relación entre el derecho nacional y el convencional sobre derechos humanos. En este estudio, se propone un modo distinto de entender tal relación para dar respuesta a las cuestiones en torno al control de convencionalidad, en particular, la referida a su titularidad y a la solución de las antinomias que puedan originarse entre el derecho convencional y el derecho interno. De este modo,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.