Polymeric nanoparticles have attracted much attention as pharmaceutical delivery vehicles to prolong residence time and enhance the bioavailability of therapeutic molecules through the mucoadhesive phenomenon. In this study, chitosan:TPP nanoparticles were synthetized using the ionic gelation technique to analyze their mucoadhesive interaction with reconstituted porcine gastrointestinal mucus from a triborheological point of view under different pH conditions (pH = 2.0, 4.0, 6.0 and 7.0). The triborheological profile of the reconstituted mucus was evaluated at different pH environments through the oscillation frequency and the flow sweep tests, demonstrating that the reconstituted mucus exhibits shear thinning behavior regardless of pH, while its viscoelastic properties showed a change in behavior from a polymeric solution performance under neutral pH conditions to a viscoelastic gel under acidic conditions. Additionally, a rheological synergism analysis was performed to visualize the changes that occur in the viscoelastic properties, the viscosity and the coefficient of friction of the reconstituted mucus samples as a consequence of the interaction with the chitosan:TPP nanoparticles to determine or to discard the presence of the mucoadhesion phenomenon under the different pH values. Mucoadhesiveness evaluation revealed that chitosan:TPP exhibited strong mucoadhesion under highly acidic pH conditions, below its pKa value of 6.5. In contrast, at neutral conditions or close to its pKa value, the chitosan:TPP nanoparticles’ mucoadhesiveness was negligible.
The purpose of the study was to develop a novel, directly compressible, co-processed excipient capable of providing a controlled-release drug system for the pharmaceutical industry. A co-processed powder was formed by adsorption of solid lipid nanoparticles (SLN) as a controlled-release film onto a functional excipient, in this case, dicalcium phosphate dihydrate (DPD), for direct compression (Di-Tab®). The co-processed excipient has advantages: easy to implement; solvent-free; industrial scaling-up; good rheological and compressibility properties; and the capability to form an inert platform. Six different batches of Di-Tab®:SLN weight ratios were prepared (4:0.6, 3:0.6, 2:0.6, 1:0.6, 0.5:0.6, and 0.25:0.6). BCS class III ranitidine hydrochloride was selected as a drug model to evaluate the mixture’s controlled-release capabilities. The co-processed excipients were characterized in terms of powder rheology and dissolution rate. The best Di-Tab®:SLN ratio proved to be 2:0.6, as it showed high functionality with good flow and compressibility properties (Carr Index = 16 ± 1, Hausner Index = 1.19 ± 0.04). This ratio could control release for up to 8 h, so it fits the ideal profile calculated based on biopharmaceutical data. The compressed systems obtained using this powder mixture behave as a matrix platform in which Fickian diffusion governs the release. The Higuchi model can explain their behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.