Phosphate-Solubilizing Bacteria (PSB) improve plant growth, yield and phosphorus content of several crops, and may be used as bioinoculant to enhance sustainable production. We evaluated the response of maize (Zea mays L.) to PSB inoculation under controlled and field conditions in Tucumán, Argentina. A pot culture experiment was conducted to investigate the effects of seven previously isolated PSB on early development of plants. Seeds were treated with each bacterial strain, and seedlings were harvested 30 days after inoculation. All strains showed a positive effect on plant growth. A significant increment in plant height (45%), shoot dry weight (40%) was determined in plants treated with Pseudomonas tolaasii IEXb, while Pseudomonas koreensis SP28 has remarkably increased P content compared to the uninoculated control. IEXb strain was selected and evaluated under field conditions in combination with triple superphosphate (TSP) as P fertilizer. The presence of IEXb strain stimulated seedling emergence (8%), shoot length (19%), grain yield (44%), 1000-grain weight (18%), total dry biomass (32%) and P content (56%) of maize plants. In general, P. tolaasii IEXb inoculation was more efficient as bioinoculant without P fertilizer than with TSP. These results provide baseline information for future studies of P. tolaasii IEXb as bioinoculant to promote an eco-friendly and sustainable agriculture.
Wild potatoes are native to the Americas, where they present very wide geographical and ecological distribution. Most are diploid, obligate out-crossers due to a multiallelic gametophytic self-incompatibility (S) locus that prevents self-fertilisation and crossing between individuals carrying identical S-alleles. They have two alternative modes of reproduction: sexual (by seeds) and asexual (by stolons and tubers), which provide, respectively, for genetic flexibility in changing environments and high fitness of adapted genotypes under stable conditions. Since the early twentieth century, their taxonomic classification has been mostly based on morphological phenotypes (Taxonomic Species Concept). More recently, attempts have been made to establish phylogenetic relationships, applying molecular tools in samples of populations (accessions) with a previously assigned specific category. However, neither the reproductive biology and breeding relations among spontaneous populations nor the morphological and genetic variability expected in obligate allogamous populations are considered when the taxonomic species concept is applied. In nature, wild potato populations are isolated through external and internal hybridisation barriers; the latter, which are genetically determined, can be either pre-zygotic (pollen-pistil incompatibility) or post-zygotic (abortion of embryo, endosperm or both tissues, sterility, and hybrid weakness and breakdown in segregating generations). The internal barriers, however, can be incomplete, providing opportunities for hybridisation and introgression within and between populations and ploidy levels in areas of overlap. The widespread occurrence of spontaneous hybrids in nature was recognised in the mid-twentieth century. Using genetic approaches, results have been obtained that provide strong support to the assertion that populations are at different stages of genetic divergence and are not at the end of the evolutionary process, as presupposed by the Taxonomic Species Concept. Furthermore, since wild potatoes have uniparental and biparental overlapping generations, the Biological Species Concept - developed for sexually reproducing biparental organisms - cannot be applied to them. In this paper, morphological, genetic, molecular and taxonomic studies in wild potato are reviewed, considering the genetic consequences of their reproductive biology, in an attempt to shed light on the species problem, because of its relevance in germplasm conservation and breeding.
The potatoes, Solanum L. section Petota Dumortier, are a group of species that possess a very broad range of biological diversity, and a wide geographical distribution in the Americas. These species constitute euploid series with somatic chromosome numbers ranging from 2n = 2x = 24 to 2n = 6x = 72. Although special attention has been given to the origin of polyploid potato species, principally the cultivated forms, that are major food crops, and hybridization has been accepted as an important evolutionary force in the section, the mechanisms involved in the origin and evolution of the diploid species have not been elucidated. Herein, we propose that homoploid hybridization is the main mechanism involved in the origin and evolution of the diploid potato species, and discuss the evidences that support our proposal.
Solanum gourlayi and Solanum spegazzinii, wild potatoes endemic to Argentina, possess desirable traits for breeding. In periodical regenerations of accessions, variability was detected for morphology and breeding barriers. The persistence of these populations in nature was evaluated after more than 20 years. Both species were observed in all visited sites, along with other wild and cultivated potatoes. Chromosome numbers coincided with the originally reported, except for one population of Solanum gourlayi, with diploid and tetraploid cytotypes. The accompanying flora and environmental conditions revealed important alterations as the result of road construction, excessive stocking rates and overgrazing. Principal coordinate and cluster analyses and an AMOVA using AFLP data of three original accessions and the corresponding new accessions revealed high molecular variability and extensive overlapping. Plant grouping of accessions occurred at a distance of 0.58 for S. gourlayi, 0.62 for S. spegazzinii and 0.67 for both species. The role of natural hybridization and sexual polyploidization in the evolution of sympatric populations of wild potatoes is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.