Machado-Joseph's disease is caused by a CAG trinucleotide repeat expansion that is translated into an abnormally long polyglutamine tract in the protein ataxin-3. Except for the polyglutamine region, proteins associated with polyglutamine diseases are unrelated, and for all of these diseases aggregates containing these proteins are the major components of the nuclear proteinaceous deposits found in the brain. Aggregates of the expanded proteins display amyloid-like morphological and biophysical properties. Human ataxin-3 containing a non-pathological number of glutamine residues (14Q), as well as its Caenorhabditis elegans (1Q) orthologue, showed a high tendency towards self-interaction and aggregation, under near-physiological conditions. In order to understand the discrete steps in the assembly process leading to ataxin-3 oligomerization, we have separated chromatographically high molecular mass oligomers as well as medium mass multimers of non-expanded ataxin-3. We show that: (a) oligomerization occurs independently of the poly(Q)-repeat and it is accompanied by an increase in beta-structure; and (b) the first intermediate in the oligomerization pathway is a Josephin domain-mediated dimer of ataxin-3. Furthermore, non-expanded ataxin-3 oligomers are recognized by a specific antibody that targets a conformational epitope present in soluble cytotoxic species found in the fibrillization pathway of expanded polyglutamine proteins and other amyloid-forming proteins. Imaging of the oligomeric forms of the non-pathological protein using electron microscopy reveals globular particles, as well as short chains of such particles that likely mimic the initial stages in the fibrillogenesis pathway occurring in the polyglutamine-expanded protein. Thus, they constitute potential targets for therapeutic approaches in Machado-Joseph's disease, as well as valuable diagnostic markers in disease settings.
Cyanobacterial extracellular polymeric substances (EPS) are heteropolysaccharides that possess characteristics suitable for industrial applications, notably a high number of different monomers, strong anionic nature and high hydrophobicity. However, systematic studies that unveil the conditions influencing EPS synthesis and/or its characteristics are mandatory. In this work, Cyanothece sp. CCY 0110 was used as model organism. Our results revealed that this strain is among the most efficient EPS producers, and that the amount of RPS (released polysaccharides) is mainly related to the number of cells, rather than to the amount produced by each cell. Light was the key parameter, with high light intensity enhancing significantly RPS production (reaching 1.8 g L(-1)), especially in the presence of combined nitrogen. The data showed that RPS are composed by nine different monosaccharides (including two uronic acids), the presence of sulfate groups and peptides, and that the polymer is remarkably thermostable and amorphous in nature.
The present review focuses on the use of Metal–Organic Frameworks, (MOFs) highlighting the most recent developments in the biological field and as bio-sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.