Abstract. Popular content such as software updates is requested by a large number of users. Traditionally, to satisfy a large number of requests, lager server farms or mirroring are used, both of which are expensive. An inexpensive alternative are peer-to-peer based replication systems, where users who retrieve the file, act simultaneously as clients and servers. In this paper, we study BitTorrent, a new and already very popular peerto-peer application that allows distribution of very large contents to a large set of hosts. Our analysis of BitTorrent is based on measurements collected on a five months long period that involved thousands of peers. We assess the performance of the algorithms used in BitTorrent through several metrics. Our conclusions indicate that BitTorrent is a realistic and inexpensive alternative to the classical server-based content distribution.
No abstract
Structured peer-to-peer (P2P) lookup services organize peers into a flat overlay network and offer distributed hash table (DHT) functionality. Data is associated with keys and each peer is responsible for a subset of the keys. In hierarchical DHTs, peers are organized into groups, and each group has its autonomous intra-group overlay network and lookup service. Groups are organized in a top-level overlay network. To find a peer that is responsible for a key, the top-level overlay first determines the group responsible for the key; the responsible group then uses its intra-group overlay to determine the specific peer that is responsible for the key. We provide a general framework for hierarchical DHTs with scalable overlay management. We specifically study a two-tier hierarchy that uses Chord for the top level. Our analysis shows that by using the most reliable peers in the top level, the hierarchical design significantly reduces the expected number of hops. We also present a method to construct hierarchical DHTs that map well to the Internet topology and achieve short intra-group communication delay. The results demonstrate the feasibility of locality-based peer groups, which allow P2P systems to take full advantage of the hierarchical design.
Abstract. Topological considerations are of paramount importance in the design of a P2P lookup service. We present TOPLUS, a lookup service for structured peer-to-peer networks that is based on the hierarchical grouping of peers according to network IP prefixes. TOPLUS is fully distributed and symmetric, in the sense that all nodes have the same role. Packets are routed to their destination along a path that mimics the routerlevel shortest-path, thereby providing a small "stretch". Experimental evaluation confirms that a lookup in TOPLUS takes time comparable to that of IP routing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.