Durante el proceso de fabricación de mecanizado, uno de los principales focos del proceso es el conocimiento de la formación de virutas. El estudio de la formación de chips muestra cuán importantes son los fenómenos involucrados en la creación de superficies de ingeniería. El estudio del comportamiento tribológico de la interfaz chip-herramienta, que ha funcionado como propulsor para los avances tecnológicos como el uso de fluidos de corte adecuados y recubrimientos cada vez más resistentes, tiene como objetivo alargar la vida útil de las herramientas de corte. El uso de la tecnología láser permite la modificación de la topografía de la herramienta de corte de forma controlada y sin cambiar las propiedades mecánicas del sustrato. El objetivo de este trabajo es verificar los mejores parámetros de texturizado láser en herramientas de corte de metal duro recubiertas con TiAlN. En total, se utilizaron nueve herramientas de corte de metal duro, texturizado con diferentes condiciones de aplicación del rayo láser. Para los criterios de comparación, se utilizó una herramienta texturizada por voladura. En estas pruebas, se insertaron dos herramientas, una sin recubrimiento y la otra recubierta con TiN por el proceso de CVD para comparar el rendimiento. Las pruebas se realizaron en el fresado frontal de hierro fundido vermicular de la clase 450. Los resultados mostraron que la textura con glazing de 3x y potencia de 2 W fue la que mejor presentó el rendimiento durante el mecanizado. Este tipo de textura permitió un menor número de zancadas para modificar el sustrato.
The advancement of cast iron alloy properties has enabled increased efficiency in automotive vehicles. Nevertheless, this progress is accompanied by a growing demand for more durable tools with higher resistance to successfully execute cutting operations. This work conducts an investigation of the machinability of different high-strength cast iron alloys. The parameter used was the machining time determined by the maximum flank wear of 0.4 mm. The machining process used was face milling with no cutting fluid, of which the cut depth and the penetration were kept constant at 1 and 60 mm, respectively. The input variables were the tool feed of 0.1 and 0.2 mm/tooth and the cutting speed of 230 and 350 m/min. The results showed that FV450 was the material that presented the highest wear values, followed by FC300(Mo+RG) and FC300(Mo). On the other hand, the FC250 demonstrated the longest machining time, resulting in an extended lifespan.
In the current scenario, industry has been faced with growing restrictions imposed by law, aimed at reducing the emission of fuel gases and pollutants into the atmosphere. The automotive industry is seeking to produce vehicles with higher performance to match these needs, so that engines become increasingly smaller, less pollutant and silent. Regulatory factors have guided and contributed to the development of new technologies applied to the internal combustion engine. Depending on such developments, maximum injection and combustion pressures can be achieved, thus, ensuring more efficiency and better performance, in addition to emission reduction. However, recent technology requires engines to withstand even greater mechanical stresses, which can inevitably lead to a component premature failure if no additional improvement are made. Therefore, there has been an incessant search for an alloy capable of replacing conventional gray cast iron, commonly used in the manufacture of blocks, but not yet suitable for high pressures. This work objective is to evaluate the face milling cutting power behavior in FC300 high strength cast iron with the addition of molybdenum and refined graphite, grade (FC300Mo + RG), for application in engine heads, compared to alloys already used for this purpose, such as the FC250 gray cast iron, the FC300 molybdenum alloyed gray cast iron, grade (FC300Mo), and the FV450 vermicular cast iron, grade (CGI).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.