Artificial intelligence is getting more and more involved in our everyday life as a result of enormous amounts of data available for feeding the machine and deep learning algorithms. Deep learning introduced new dimensions and possibilities of applications in medical science. With COVID-19 outbreak in 2020 at global level, the health systems of many countries were overwhelmed. With many patients infected, health system is pressured to correctly diagnose patient's state of illness. In a lot of occasions, it was almost impossible to correctly diagnose many COVID-19 positive patients that have pneumonia due to many outbreaks in many areas. The intelligent system that could detect pneumonia with certainty could help in easing the pressure on the health system and make doctors focus on more severely ill patients. This paper describes development of pneumonia detection model using TensorFlow to processes the chest X-ray images to determine whether the patient has pneumonia. The model is based on deep learning algorithm supported through convolutional neural network. The model presented in this paper has achieved rather high accuracy (over 95%) in analyzing X-Ray images and could be used to speed up decision process in healthcare.
Traditional statistical models as tools for summarizing patterns and regularities in observed data can be used for making predictions. However, statistical prediction models contain small number of important predictors, which means limited informative capability. Also, predictive statistical models that provide some type of regular patterns that seems to hold true statistically, are used without previous understanding of causal mechanisms in the observed data. Machine learning methods like artificial neural networks as a special class of artificial intelligence provide the ability to interpret and understand data in more sophisticated way. NN methods use non-linear algorithms, considering links and associations between parameters, while statistical use linear processes to improve only short-term prediction's accuracy by minimizing cost function, often one-step-ahead, without considering medium and long-term ones. Disregarding that designing an optimal artificial neural network is very complex process, they are considered as potential solution for overcoming main flaws of statistical prediction models. However, they will not automatically improve predictions accuracy, so several artificial neural networks and traditional statistical methods are evaluated and analyzed through accuracy measures for prediction purposes in various fields of applications. Based on gained results, couple of techniques for improving artificial neural networks are proposed to get better accuracy results than statistical predictive methods.
BACKGROUND: The necessity of setting up high-resolution models is essential to timely forecast dangerous meteorological phenomena. OBJECTIVE: This study presents a verification of the numerical Weather Research and Forecasting non-hydrostatic Mesoscale Model (WRF NMM) for weather prediction using the High-Performance Computing (HPC) cluster over the complex relief of Montenegro. METHODS: Verification was performed comparing WRF NMM predicted values and measured values for temperature, wind and precipitation for six Montenegrin weather stations in a five-year period using statistical parameters. The difficult task of adjusting the model over the complex Montenegrin terrain is caused by a rapid altitude change in in the coastal area, numerous karst fields, basins, river valleys and canyons, large areas of artificial lakes on a relatively small terrain. RESULTS: Based on the obtained verification results, the results of the model vary during time of day, the season of the year, the altitude of the station for which the model results were verified, as well as the surrounding relief for them. The results show the best performance in the central region and show deviations for some metrological measures in some periods of the year. CONCLUSION: This study can give recommendations on how to adapt a numerical model to a real situation in order to produce better weather forecast for the public.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.