Superconducting high kinetic inductance elements constitute a valuable resource for quantum circuit design and millimeter-wave detection. Granular aluminum (grAl) in the superconducting regime is a particularly interesting material since it has already shown a kinetic inductance in the range of nH/□ and its deposition is compatible with conventional Al/AlOx/Al Josephson junction fabrication. We characterize microwave resonators fabricated from grAl with a room temperature resistivity of 4×10^{3} μΩ cm, which is a factor of 3 below the superconductor to insulator transition, showing a kinetic inductance fraction close to unity. The measured internal quality factors are on the order of Q_{i}=10^{5} in the single photon regime, and we demonstrate that nonequilibrium quasiparticles (QPs) constitute the dominant loss mechanism. We extract QP relaxation times in the range of 1 s and we observe QP bursts every ∼20 s. The current level of coherence of grAl resonators makes them attractive for integration in quantum devices, while it also evidences the need to reduce the density of nonequilibrium QPs.
Superconducting quantum information processing machines are predominantly based on microwave circuits with relatively low characteristic impedance, of about 100 Ohm, and small anharmonicity, which can limit their coherence and logic gate fidelity. A promising alternative are circuits based on so-called superinductors, with characteristic impedances exceeding the resistance quantum RQ = 6.4 kΩ. However, previous implementations of superinductors, consisting of mesoscopic Josephson junction arrays, can introduce unintended nonlinearity or parasitic resonant modes in the qubit vicinity, degrading its coherence. Here we present a fluxonium qubit design using a granular aluminum (grAl) superinductor strip. Granular aluminum is a particularly attractive material, as it self-assembles into an effective junction array with a remarkably high kinetic inductance, and its fabrication can be in-situ integrated with standard aluminum circuit processing. The measured qubit coherence time T R 2 up to 30 µs illustrates the potential of grAl for applications ranging from protected qubit designs to quantum limited amplifiers and detectors. arXiv:1809.10646v1 [cond-mat.supr-con]
Granular aluminum (grAl) is a promising high kinetic inductance material for detectors, amplifiers, and qubits. Here we model the grAl structure, consisting of pure aluminum grains separated by thin aluminum oxide barriers, as a network of Josephson junctions, and we calculate the dispersion relation and nonlinearity (self-Kerr and cross-Kerr coefficients). To experimentally study the electrodynamics of grAl thin films, we measure microwave resonators with open-boundary conditions and test the theoretical predictions in two limits. For low frequencies, we use standard microwave reflection measurements in a low-loss environment. The measured low-frequency modes are in agreement with our dispersion relation model, and we observe self-Kerr coefficients within an order of magnitude from our calculation starting from the grAl microstructure. Using a high-frequency setup, we measure the plasma frequency of the film around 70 GHz, in agreement with the analytical prediction.
As quantum coherence times of superconducting circuits have increased from nanoseconds to hundreds of microseconds, they are currently one of the leading platforms for quantum information processing. However, coherence needs to further improve by orders of magnitude to reduce the prohibitive hardware overhead of current error correction schemes. Reaching this goal hinges on reducing the density of broken Cooper pairs, so-called quasiparticles. Here, we show that environmental radioactivity is a significant source of nonequilibrium quasiparticles. Moreover, ionizing radiation introduces time-correlated quasiparticle bursts in resonators on the same chip, further complicating quantum error correction. Operating in a deep-underground lead-shielded cryostat decreases the quasiparticle burst rate by a factor thirty and reduces dissipation up to a factor four, showcasing the importance of radiation abatement in future solid-state quantum hardware.
We present a planar qubit design based on a superconducting circuit that we call concentric transmon. While employing a straightforward fabrication process using Al evaporation and lift-off lithography, we observe qubit lifetimes and coherence times in the order of 10 µs. We systematically characterize loss channels such as incoherent dielectric loss, Purcell decay and radiative losses. The implementation of a gradiometric SQUID loop allows for a fast tuning of the qubit transition frequency and therefore for full tomographic control of the quantum circuit. Due to the large loop size, the presented qubit architecture features a strongly increased magnetic dipole moment as compared to conventional transmon designs. This renders the concentric transmon a promising candidate to establish a site-selective passive directẐ coupling between neighboring qubits, being a pending quest in the field of quantum simulation.Quantum bits based on superconducting circuits are leading candidates for constituting the basic building block of a prospective quantum computer. A common element of all superconducting qubits is the Josephson junction. The nonlinearity of Josephson junctions generates an anharmonic energy spectrum in which the two lowest energy states can be used as the computational basis 1,2 . Over the last decade there has been a two order of magnitude increase in coherence times of superconducting qubits. This tremendous improvement allowed for demonstration of several major milestones in the pursuit of scalable quantum computing, such as the control and entanglement of multiple qubits 3,4 . Further increases in coherence times will eventually allow for building a fault tolerant quantum computer with a reasonable overhead in terms of error correction, as well as implementing novel quantum simulation schemes by accessing wider experimental parameter ranges 5 . While superconducting qubits embedded in a 3D cavity 6 have shown coherence times in excess of 100 µs 7 , this approach may impose some constraint on the scalability of quantum circuits. Since the Josephson junction itself does not limit qubit coherence 6 , comparably long lifetimes can also be achieved in a planar geometry by careful circuit engineering.In this paper, we present the design and characterization of a superconducting quantum circuit comprising a concentric transmon qubit 8 , schematically depicted in Fig. 1(a). The two capacitor pads forming the transmon's a) Electronic mail: jochen.braumueller@kit.edu. large shunt capacitance are implemented by a central disk island and a concentrically surrounding ring. The two islands are interconnected by two Josephson junctions forming a gradiometric SQUID. A 50 Ω impedance matched on-chip flux bias line located next to the qubit allows for fast flux tuning of the qubit frequency due to the imposed asymmetry. This guarantees high experimental flexibility and enables full tomographic control. The gradiometric flux loop design reduces the sensitivity to external uniform magnetic fields and thus to external flux ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.