Photonic integrated circuits hold great potential for realizing quantum technology. Efficient single-photon detectors are an essential constituent of any such quantum photonic implementation. In this regard waveguide-integrated superconducting nanowire single-photon detectors are an ideal match for achieving advanced photon counting capabilities in photonic integrated circuits. However, currently considered material systems do not readily satisfy the demands of next generation nanophotonic quantum technology platforms with integrated single-photon detectors, in terms of refractive-index contrast, band gap, optical nonlinearity, thermo-optic stability and fast single-photon counting with high signal-to-noise ratio. Here we show that such comprehensive functionality can be realized by integrating niobium titanium nitride superconducting nanowire single-photon detectors with tantalum pentoxide waveguides. We demonstrate state-of-the-art detector performance in this novel material system, including devices showing 75% on-chip detection efficiency at tens of dark counts per second, detector decay times below 1 ns and sub-30 ps timing accuracy for telecommunication wavelengths photons at 1550 nm. Notably, we realize saturation of the internal detection efficiency over a previously unattained bias current range for waveguide-integrated niobium titanium nitride superconducting nanowire single-photon detectors. Our work enables the full set of high-performance single-photon detection capabilities on the emerging tantalum pentoxide-on-insulator platform for future applications in integrated quantum photonics.
We report the detection of a gate-tunable kinetic inductance in a hybrid InAs/Al nanowire. For this purpose, we embed the nanowire into a quarter-wave coplanar waveguide resonator and measure the resonance frequency of the circuit. We find that the resonance frequency can be changed via the gate voltage that controls the electron density of the proximitized semiconductor and thus the nanowire inductance. Applying Mattis-Bardeen theory, we extract the gate dependence of the normal-state conductivity of the nanowire, as well as its superconducting gap. Our measurements complement existing characterization methods for hybrid nanowires and provide a useful tool for gate-controlled superconducting electronics.
High-harmonic generation is widely used for providing extreme ultraviolet radiation in attosecond science. Such experiments include photoelectron spectroscopy, diffractive imaging, or the investigation of spin dynamics. Many applications are restricted by a low photon flux which originates from the low efficiency of the generation process. In this article an effective method based on the quasi-phase-matched generation of high harmonics in spatially structured, laser ablated plasma is demonstrated. Through a proper dimensioning of the plasma structure, the harmonic yield is optimized for a controllable range of harmonic orders. By using four coherent zones, the intensity of a single harmonic is increased to a maximal possible value of 16 compared to using a single zone. The Gouy phase shift of the fundamental field is identified as the primary effect responsible for constructive interference of the harmonic fields generated in the individual plasma jets of the plasma structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.