Abstract. Long non-coding RNAs (lncRNAs) have recently emerged as a major class of regulatory molecules involved in a broad range of biological processes and complex diseases. Our aim was to identify important lncRNAs that might play an important role in contributing to glioblastoma (GBM) pathogenesis by conducting lncRNA and mRNA profile comparison between GBM and normal brain tissue. The differentially expressed lncRNA and mRNA profiles of the tissue between GBM patient and age-matched donor without GBM diseases were analyzed using microarrays. We propose a novel model for the identification of lncRNA-mRNA targeting relationships that combine the potential targets of the differentially expressed lncRNAs with the differentially expressed mRNA abundance data. Bioinformatic analysis of the predicted target genes (gene ontology, pathway and network analysis) was performed for further research. The lncRNA microarray reveals differentially expressed lncRNAs between GBM and normal brain tissues. In the GBM group, 654 lncRNAs were upregulated and 654 were downregulated (fold change ≥4.0 or ≤0.25, P<0.01). We found 104 matched lncRNAmRNA pairs for 91 differentially expressed lncRNAs and 84 differentially expressed genes. Target gene-related pathway analysis showed significant changes in PPAR pathways in the GBM group compared with the normal brain group (P<0.05).
MicroRNAs (miRNAs) are frequently dysregulated in glioblastoma (GBM) patients. It has been discovered that highly stable extracellular miRNAs circulate in the blood of both healthy individuals and patients. miRNAs in serum of patients with GBM and normal controls were analyzed by microarray analysis. The relevant bioinformatic analysis of the predicted target genes (gene ontology, pathway, gene network analysis) were performed. The miRNA microarray reveals differentially expressed miRNAs in serum between the GBM and normal controls. Of the 752 miRNAs, 115 miRNAs were upregulated in the GBM group, and 24 miRNAs were downregulated (fold change ≥2.0, P<0.01). By further analysis, we found that miR-576-5p, miR-340 and miR-626 were significantly overexpressed, but miR-320, let-7g-5p and miR-7-5P showed significantly low expression in GBM patients. By further bioinformatic analysis, we found that they possibly play important roles in the regulation of glioma signaling pathways. In summary, the six miRNAs are significant distinct in the peripheral blood of patients with GBM pathologies. These data suggest that the miRNA profile of the peripheral blood may serve as a new biomarker for glioma diagnosis with high specificity and sensitivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.