Sour rot is a major postharvest disease of citrus fruit and is caused by the fungal pathogen Geotrichum citri-aurantii. A lack of chemicals certified for the control of this disease has led to the consideration of alternative methods and strategies, such as the use of yeasts as biocontrol agents. The purpose of the present study was to test the ability of yeasts isolated from leaves, flowers, fruit, and soil, and six Saccharomyces cerevisiae isolates to control citrus sour rot, to assess the mechanisms of action of the yeast isolates that were demonstrated to be effective for biocontrol, and to identify the most effective yeast isolates for the biocontrol of G. citri-aurantii. In in vivo assays, three yeast isolates (ACBL-23, ACBL-44, and ACBL-77) showed a potential for controlling sour rot in citrus fruits, both preventatively and curatively. Most of the eight yeast isolates that were assessed for a mechanism of action did not produce antifungal compounds in an amount sufficient to inhibit the growth of the pathogen. Additionally, nutrient competition among the yeast strains was not found to be a biocontrol strategy. Instead, killer activity and hydrolytic enzyme production were identified as the major mechanisms involved in the biocontrol activity of the yeasts. Isolates ACBL-23, ACBL-44, and ACBL-77, which controlled sour rot most effectively, were identified as Rhodotorula minuta, Candida azyma, and Aureobasidium pullulans, respectively. To our knowledge, this is the first report of the potential of C. azyma as a biological control agent against a postharvest pathogen and its ability to produce a killer toxin.
Penicillium italicum (Blue mold) is a major postharvest disease of citrus. An alternative to controlling the disease is through the use of yeasts. The purpose of the present study was to screen effective yeast antagonists against P. italicum, isolated from soil, leaves, flowers, and citrus fruits, to assess the action mechanisms of the yeast isolates that were demonstrated to be effective for biocontrol, and to identify the most effective yeast isolates for the biocontrol of blue mold. The in vitro assays showed that six yeast strains inhibited up to 90% of the pathogen's mycelial growth. In vivo assays, evaluating the incidence of blue mold on sweet oranges, the strains ACBL-04, ACBL-05, ACBL-10 and ACBL-11 were effective, demonstrating the potential for the blue mold control when preventively applied, whereas the ACBL-08 strain showed a high potential to preventive and curative applications. Additional studies on the modes of action of these yeast strains showed that most of the evaluated yeast strains did not produce antifungal substances, in sufficient quantities to inhibit the pathogen growth. Competition for nutrients was not a biocontrol strategy used by the yeast strains. The 'killer' activity might be the main action mechanism involved in P. italicum biocontrol. This study indicated that the multiple modes of action against the pathogen presented by yeasts may explain why these strains provided P. italicum control under in vitro and in vivo conditions. However, further studies in future might be able to elucidate the 'killer' activity and its interaction with pathogen cells and the bioproduct production using Candida stellimalicola strains for control postharvest diseases.
Este é um artigo publicado em acesso aberto (Open Access) sob a licença Creative Commons Attribution, que permite uso, distribuição e reprodução em qualquer meio, sem restrições desde que o trabalho original seja corretamente citado.Mecanismos de ação de isolados de leveduras envolvidos no biocontrole de Penicillium digitatum, agente causal do bolor verde em frutos cítricos
This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.