Penelitian ini bertujuan untuk memberikan definisi pemetaan (psi,varphi)_omega-kontraksi dalam ruang p-metrik modular, memberikan teorema titik tetap untuk pemetaan (psi,varphi)_omega-kontraksi pada ruang p-metrik modular, dan memberikan aplikasi dari teorema titik tetap tersebut. Penelitian ini menggunakan metode studi literatur. Hasil penelitian menunjukkan bahwa pemetaan (psi,varphi)_omega-kontraksi didefinisikan dalam ruang -metrik modular dengan memperumum pemetaan (psi,varphi)_omega-kontraksi dalam ruang p-metrik dan teorema titik tetap untuk pemetaan tersebut pada ruang p-metrik modular yang juga merupakan perumuman dari teorema titik tetap tersebut pada ruang p-metrik dengan penambahan beberapa sifat yang diasumsikan. Selain itu, hasil penilitian lainnya adalah aplikasi teorema titik tetap tersebut yang menjamin eksistensi solusi suatu persamaan integral yang juga merupakan perumuman dari aplikasi teorema titik tetap tersebut dalam ruang p-metrik. Dari hasil tersebut, dapat disimpulkan bahwa pemetaan (psi,varphi)_omega-kontraksi dapat didefinisikan dalam ruang p-metrik modular dan dapat dibuktikan teorema titik tetap untuk pemetaan (psi,varphi)_omega-kontraksi pada ruang p-metrik modular beserta aplikasi dari teorema titik tetap tersebut yang menjamin eksistensi solusi suatu persamaan integral.
In this paper, we will discuss about fixed point theorems in generalized modular metric space for Kannan- type mapping. The existence of the fixed point of this mapping is guaranteed by providing that the mapping domain is a -finite set and the Kannan- mapping constant satisfied where K is a constant from the axiom of generalized modular metric space.
Restrictions of the visitor on the tourism places is one of the mechanism of health protocol that carried out during the new normal era. This restriction become a dilemma since the manager of the tourism places want to maximize their profit by allowing all visitor, while the government still limiting the number of visitor to avoid crowding. Otherwise, real-time monitoring of the number of visitor somewhat difficult since they can come in and leave the tourism places at any time. In this study we implement the queuing theory to solve this problem. The visitor of the tourism places is modelled as the customer, while the time spent by them in the tourism places is modelled as the serving duration. By estimating the average of time spent by the visitor and determine the average number of arrivals during the specified time, the number of visitor in the tourism place can be estimated as the number of people in the queuing system. As a preliminary study, this paper only focused on two queuing model, namely the M/M/1 and M/G/1. Further study is needed to develop the model and calibrate it using the data from a specified tourism place.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.