Banyak investor masih ragu dengan risiko dalam berinvestasi, hal ini disebabkan oleh fluktuasi indeks harga saham dalam waktu singkat. Telah banyak dikembangkan metode untuk memperkirakan harga saham yang akan datang namun masih memiliki keterbatasan di antaranya adalah ketergantungan jangka panjang. Tujuan penelitian yang ingin dicapai adalah menghasilkan model peramalan harga saham yang lebih efektif dan memberikan hasil yang akurat. Tahapan yang dilakukan terdiri dari pengumpulan data, preprocessing data, pembagian data, perancangan LSTM, pelatihan LSTM dan melakukan pengujian. Berdasarkan hasil pengujian, LTSM mampu memprediksi harga saham pada tahun 2017-2019 dengan performa yang baik dan tingkat kesalahan yang relatif kecil. Sedangkan pengujian menggunakan metode Support Vector Regression (SVR), LSTM memiliki nilai loss lebih baik dari algoritma SRV. Rentang data pada LSTM mempengaruhi waktu latih yang digunakan, semakin besar rentang data maka semakin lama waktu latih yang digunakan. Rentang data pada SVR mempengaruhi nilai loss, semakin besar rentang data maka semakin besar nilai loss yang dihasilkan. Dengan demikian dapat disimpulkan bahwa LSTM mampu menanggulangi ketergantungan jangka panjang dan mampu memprediksi harga saham dengan hasil yang akurat.
Penelitian ini bertujuan untuk meningkatkan akurasi dengan menurunkan tingkat kesalahan prediksi dari 5 data saham blue chip di Indonesia. Dengan cara mengkombinasikan desain 4 hidden layer neural nework menggunakan Long Short Term Memory (LSTM) dan Gated Recurrent Unit (GRU). Dari tiap data saham akan dihasilkan grafik rmse-epoch yang dapat menunjukan kombinasi layer dengan akurasi terbaik, sebagai berikut; (a) BBCA dengan layer LSTM-GRU-LSTM-GRU (RMSE=1120,651, e=15), (b) BBRI dengan layer LSTM-GRU-LSTM-GRU (RMSE =110,331, e=25), (c) INDF dengan layer GRU-GRU-GRU-GRU (RMSE =156,297, e=35 ), (d) ASII dengan layer GRU-GRU-GRU-GRU (RMSE =134,551, e=20 ), (e) TLKM dengan layer GRU-LSTM-GRU-LSTM (RMSE =71,658, e=35 ). Tantangan dalam mengolah data Deep Learning (DL) adalah menentukan nilai parameter epoch untuk menghasilkan prediksi akurasi yang tinggi.
Stemming words to remove suffixes has applications in text search, translation machine, summarization document, and text classification. For example, Indonesian stemming reduces the words "kebaikan", "perbaikan", "memperbaiki" and "sebaikbaiknya" to their common morphological root "baik". In text search, this permits a search for a player to find documents containing all words with the stem play. In the Indonesian language, stemming is of crucial importance: words have prefixes, suffixes, infixes, and confixes that make them match to relate difficult words. This research proposed a stemmer with more accurate word results by employing an algorithm which gave more than one word candidate results and more than one affix combinations. New stemming algorithm is called CAT stemming algorithm. Here, the word results did not depend on the order of the morphological rule. All rules were checked, and the word results were kept in a candidate list. To make an efficient stemmer, two kinds of word lists (vocabularies) were used: words that had more than one candidate words and list of root word as a candidate reference. The final word results were selected with several rules. This strategy was proved to have a better result than the two most known about Indonesian stemmers. The experiments showed that the proposed approach gave higher accuracy than the compared systems known.
Merebaknya pandemi covid-19 memberikan dampak ke segala bidang kehidupan, termasuk kegiatan ekspor impor, khususnya impor barang yang berkaitan dengan alat kesehatan. Peningkatan impor yang signifikan menyebabkan aktifitas pemeriksaan dokumen terkait dengan customs clearance semakin meningkat tajam. Kondisi ini mempengaruhi kinerja petugas dalam hal ketelitian dan kekuatan jasmani, yang saat ini masih dilakukan secara manual yaitu pembacaan naskah secara langsung. Dengan demikian sangat rentan terhadap terjadinya kesalahan baca dan entry data saat pemeriksaan. Akibatnya harus dilakukan pemeriksaan ulang dan banyaknya complain dari penerima barang. Penelitian ini bertujuan menerapkan metode Optical Character Recognition (OCR) untuk mengenali karakter dokumen ijin distribusi alat kesehatan. Berbagai tahap penelitian yang digunakan antara lain: preprocessing yang terdiri dari proses grayscaling, binerisasi, cropping kemudian dilanjutkan dengan proses segmentasi, ekstraksi fitur dan untuk proses terakhir adalah proses metode template matching yang merupakan suatu metode yang banyak digunakan untuk mengenali suatu karakter. Hasil uji coba 5 citra dokumen menunjukkan tingkat akurasi pengenalan karakter sebesar 98.78% dan waktu proses rata-rata 1.29 detik Dengan demikian dapat disimpulkan bahwa metode OCR dapat di terapkan untuk mengenali suatu karakater pada dokumen izin distribusi alat kesehatan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.