2017
DOI: 10.18517/ijaseit.7.5.1705
|View full text |Cite
|
Sign up to set email alerts
|

Improving Stemming Algorithm Using Morphological Rules

Abstract: Stemming words to remove suffixes has applications in text search, translation machine, summarization document, and text classification. For example, Indonesian stemming reduces the words "kebaikan", "perbaikan", "memperbaiki" and "sebaikbaiknya" to their common morphological root "baik". In text search, this permits a search for a player to find documents containing all words with the stem play. In the Indonesian language, stemming is of crucial importance: words have prefixes, suffixes, infixes, and confixes… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
2
0
2

Year Published

2018
2018
2023
2023

Publication Types

Select...
4
1

Relationship

1
4

Authors

Journals

citations
Cited by 5 publications
(4 citation statements)
references
References 6 publications
0
2
0
2
Order By: Relevance
“…This calculation as were requires a expansive sum of preparing information to decide the assessed parameters required within the classification prepare [9]. Subsequent research was conducted by Winarti et al for analysis on Indonesian texts with large data [10]. The results of this study indicate that the k-nearest neighbor algorithm can provide good performance because the algorithm is resilient to data noise [11].…”
Section: Introductionmentioning
confidence: 77%
“…This calculation as were requires a expansive sum of preparing information to decide the assessed parameters required within the classification prepare [9]. Subsequent research was conducted by Winarti et al for analysis on Indonesian texts with large data [10]. The results of this study indicate that the k-nearest neighbor algorithm can provide good performance because the algorithm is resilient to data noise [11].…”
Section: Introductionmentioning
confidence: 77%
“…Dari beberapa referensi berkaitan dengan algoritma stemming itu adalah inti pemrosesan bahasa alami teknik Pengambilan Informasi yang efisien dan efektif, dan salah satu yang diterima secara luas oleh pengguna. Itu sudah biasa mengubah varian kata menjadi akar kata yang sama dengan menerapkannya dalam banyak kasus aturan morfologi (Winarti et al, 2017).…”
Section: Ijcit (Indonesian Journal On Computer and Information Technology)unclassified
“…Selanjutnya adalah perbandingan yang merupakan kejadian atau tidak dengan ujicoba tanpa algoritma dan yang dikombinasikan dari ketiga Algoritma Stemming khususnya Bahasa Indonesia yaitu, Nazief-Adriani, Idris, dan Arifin-Setiono Di sini membedakan dari dua kata dengan "covid" dan "covid 19". Dari beberapa referensi untuk mengetahui akurasinya (Bhadoria & Kumar Patel, 2014;Winarti et al, 2017). Dari hasil tabel 3, persentase paling besar untuk mendapatkan kata "covid" dan "covid 19" adalah dikombinasikan dari ketiga Algoritma Stemming khususnya Bahasa Indonesia yaitu, Nazief-Adriani, Idris, dan Arifin-Setiono sebesar rata-rata 96,56%.…”
Section: Pembahasanunclassified
“…10, No. 12, 2019 220 | P a g e www.ijacsa.thesai.org Nazief Adriani's algorithm has been used in research [6], [7], [8], dan [9]. The algorithm created by Bobby Nazief and Mirna Adriani has the following stages:…”
Section: Application's Designmentioning
confidence: 99%