Eucalyptus alba Reinw. ex Blume merupakan pohon pusaka di Kebun Raya Bogor yang ditanam pada tahun 1892 (umur 130 tahun di tahun 2022), hanya ada satu spesimen, dan memiliki bentuk batang yang unik. Pohon dengan kategori pusaka ini perlu dilestarikan dengan memperhatikan kondisi kesehatannya. Tujuan penelitian ini adalah menganalisis kondisi kesehatan pohon secara visual dan teknologi tomografi serta rekomendasi penanganannya. Metode yang digunakan adalah pengamatan visual berdasarkan International Society of Arboriculture dan teknologi tomografi menggunakan PiCUS 3 Sonic Tomograph. Hasil penelitian menunjukkan bahwa secara visual E. alba memiliki potensi tumbang/patah yang rendah pada batang utama. Namun setelah dilakukan pengukuran pelapukan pada batang utama di berbagai level ketinggian dengan teknologi tomografi, hasilnya adalah di ketinggian 50 cm (95%), 140 cm (76%), 550 cm (18%), dan 810 cm (11%). Oleh karena itu, E. alba memiliki potensi tumbang yang besar pada batang bagian bawah karena persentase pelapukan yang melebihi 70% dengan diameter yang besar (275 cm). Rekomendasi penanganan pohon berisiko adalah mempertahankan proses fisiologis pohon dengan menjaga kesuburan tanah, pemasangan umpan rayap, pembuatan pagar melingkar ke arah utara, pengukuran pelapukan berkala (satu tahun sekali), dan pemberian papan informasi terkait kondisi terkini dan mitigasi bahayanya. Penebangan total atau sebagian tidak direkomendasikan mengingat status E. alba sebagai pohon pusaka.
Bogor Botanic Gardens is an ex-situ plant conservation area in Indonesia. Since BBG is 103 years old, many collections are 100 years old or older. These antique collections may sustain damage, such as broken or collapsing, endangering visitors and employees. As a result, monitoring tree health at BBG is a critical task. According to the tree health monitoring data, 73 of 244 trees were further checked using the PiCUS Sonic Tomograph. Trees from the Fabaceae (31%) and Myrtaceae (10%) families were the most frequently checked. Walnuts trees from the Burseraceae family had the most specimens (47,94%). The PST effectively provides an immediate picture of the stem condition by calculating solid and decaying wood percentage values.
Preservation effort to prevent tree collections loss even on aged trees (> 100 years old) is one of important missions in Bogor Botanical Garden since its establishment in 1817. Abiotic factors such as global warming and biotic factors from pests and diseases can threaten the survival of aged tree collections. Their survival is also influenced by plant health’s deterioration as they age. As the BBG has many functions not only for conservation but also for human ecological activities, fallen tree accidents are becoming primary concern to prevent biodiversity loss and people’s lives. We examined 154 trees health to determine a falling probability of 1106 aged trees based on several factors that caused to fall in the past and to make model prediction generated by nine supervised machine learning algorithms. We also classify susceptibility of tree families prone to fall from the highest accuracy of algorithm prediction. Inverse Distance Weighted interpolation method was used to depict zone map of trees prone to fall. The prediction showed that Random Forest model had the highest accuracy and low false negative (FN) value which were important to minimize error calculation on aged trees was not prone to fall but it turns out to be prone to fall. It predicted 885 trees prone to fall which 358 had high probability to fall. Fabaceae, Lauraceae, Moraceae, Meliaceae, Dipterocarpaceae, Sapindaceae, Rubiaceae, Myrtaceae, Araucariaceae, Malvaceae, and Anacardiaceae were tree families that were highly predicted to fall.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.