Cyanobacterial neurotoxins, such as anatoxin-a and saxitoxin, as well as hepatotoxins including microcystins and noclularin were simultaneously determined in water samples by ion-pair supported, solid phase extraction (SPE) and reversed-phase liquid chromatography coupled to UV and tandem mass spectrometry (RP-LC-UV; MS-MS). With quantification limits in water 1 samples of approximately 50 ng L for the microcystins (MC-LR, -YR, -RR, -LA), noclularin, and 1 anatoxin-a and 630 ng L for saxitoxin the method is well suited for surveillance of the proposed WHO guidelines for cyanobacterial toxins. MS detection permits, unlike the commonly used UV cletection, unambiguous identification and accurate quantification of cyanobacterial toxins even in highly matrix-polluted, watersamples.
The indicator function of the fluorescence signals of the cyanopigments phycocyanin and phycoerythrin as early warning parameters against the microcystins in drinking water was investigated by lab- and pilot-scale studies. The early warning function of the fluorescence signals was examined with regard to the signals' real-time character, their sensitivity and the behaviour of the cyanopigments in different treatment stages in comparison to microcystins. Fluorescence measurements confirmed the real-time character, since they can be carried out on-site without the pre-concentration of pigments. The limit of detection of phycoerythrin is determined at 0.7 microg/L and of phycocyanin at 5.3 microg/L respectively. If the pigment/microcystin ratio is known and calculated to be higher than 1, very low microcystin concentrations can be estimated by the fluorescence signals. The compared behaviour of both pigments and selected microcystins (MC-LR and MC-RR) during water treatment shows that pigments have an early warning function against microcystins in conventional treatment stages using pre-oxidation with permanganate, powdered-activated carbon and chlorination. In contrast, cyanopigments do not have an early warning function if chlorine dioxide is used as a pre-oxidant or final disinfection agent. In order to use pigment control measurements in drinking water treatment the initial pigment/toxin ratio of the raw water must be known.
For assessing the safety of drinking water supplies suffering cyanobacterial blooms in their water source, a methodology is proposed which relates the performance of their current treatment train to the quality of the raw water. The approach considers that different treatment trains can remove algal toxins with different efficiency. Maximum Tolerable (MT-) values of the raw water expressed by cell counts or by biovolumes of cyanobacteria were calculated. Three MT-categories were identified by colours; high risk (red), moderate risk (yellow) and no risk (green). Two treatment facilities using a conventional (1) and polishing train (2) were assessed using this methodology. For most of the time during an algal bloom the water quality could be classified as yellow which means short term higher toxin levels in comparison to the guide line in clear water were found. However, the red classification, indicating a high risk for drinking water quality was never reached. The model proposed can be understood as supplement of the common alert level framework, ALF-concept (Chorus and Bartram, Situation Assessment, Planning and Management. London and New York: E & FN Spon. 1999; House et al., Management Strategies for Toxic Blue Green Algae: Literature Review. Australia: CRC for Water Quality and Treatment. 2004).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.