Water pollution, especially by inorganic and organic substances, is considered as a critical problem worldwide. Several governmental agencies are listing an increasing number of compounds as serious problems in water because of their toxicity, bioaccumulation, and persistence. In recent decades, there has been considerable research on developing analytical methods of heavy metal ions and organic pollutants from water. Ionic liquids, as the environment-friendly solvents, have been applied in the analytical process owing to their unique physicochemical properties. This review summarizes the applications of ionic liquids in the determination of heavy metal ions and organic pollutants in water samples. In addition, some sorbents that were modified physically or chemically by ionic liquids were applied in the adsorption of pollutants. According to the results in all references, the application of new designed ionic liquids and related sorbents is expected to increase in the future
A solid-phase extraction method was developed by using new bifunctional ionic liquid-based silicas as sorbents to isolate aflatoxin B1 from moldy corn and peanut. Firstly, according to the adsorption efficiency, two sorbents imidazolium chloride-butylimidazolium chloride-based silica (Sil@BIm-Im) and imidazolium chloride-hexylimidazolium chloride-based silica (Sil@HIm-Im) were selected. The RSM was introduced to optimize adsorption conditions such as methanol/water ratio, time, and pH. Sil@HIm-Im, which had the highest adsorption efficiency, was used in SPE as a sorbent. After 2.0 mL of loading samples, washing solvents were optimized as 6.0 mL and 4.0 mL of water for corn and peanut, 2.0 mL of acetonitrile, and 3.0 mL of methanol. 3.0 mL of methanol/acetic acid (2.0% vol.) was investigated as an elution solvent. Finally, 0.009 μg/g and 0.023 μg/g of aflatoxin B1 were obtained in corn and peanut extract with recoveries of 80.0%–103.3% and RSDs of 2.37%–6.58%.
Aristolochic acid I is a toxic compound found in the genus of Aristolochia plants, which are commonly used as herbal cough treatment medicines. To remove the aristolochic acid I in extract efficiently and selectively, a molecularly imprinted polymer composed of ethylimidazole ionic liquid‐based zeolitic imidazolate framework‐67 was synthesized and used as the adsorbent. Under the conditions optimized by the software design expert, the sorbent showed highest adsorption amount of 34.25 mg/g in methanol/water (95:5, v/v) at 39°C for 138 min. The sorbent was then applied to solid phase extraction to isolate aristolochic acid I from the extract of the herbal plant Fibraurea Recisa Pierre. 0.043 mg/g of aristolochic acid I was obtained after the loading, washing, and elution processes. The limit of detection of 2.41 × 10−5 mg/mL and good recoveries provided evidence for the accuracy of this method.
Introduction
Ephedrine is a typical compound found in lots of plant species that is used in several medicines for the treatment of asthma and bronchitis. However, excess amounts are harmful to humans, so it needs to be removed.
Objective
This study developed a multi‐phase extraction (MPE) method with a molecular imprinted polymer (MIP) coated ionic liquid (IL)‐based silica (SiO2@IL@MIP) to simultaneously extract and separate ephedrine from Pinellia ternata, 10 medicines, and urine samples.
Methods
IL was immobilized on silica. Subsequently, the IL was combined with the functional monomer, followed by the addition of the crosslinker and template. The resulting sorbent was applied to the MPE, and the extraction, washing and elution solvents were evaluated.
Results
Fourier‐transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) confirmed the synthesis of SiO2@IL@MIP. A maximum adsorption amount of 5.76 mg/g was obtained at 30°C at a neutral pH. In MPE, 10.00 mL of methanol could extract all the ephedrine from Pinellia ternata. The interference was removed by washing with 4.00 mL of water, ethanol, and acetonitrile. Finally, 8.00 mL of methanol/acetic acid (99:1, v/v) was applied as the elution solvent. The following were extracted: 5.50 μg/g of ephedrine from Pinellia ternata, 0.00–46.50 μg/g from the 10 herbal medicines, and 68.70–102.80 μg/mL in the urine samples.
Conclusion
The proposed method was applied successfully to the simultaneously extraction and separation of ephedrine from plants and medicines. These results are expected to provide important data for the development of new methods for the separation and purification of bioactive compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.