Bacterial contamination and biofilm formation onpercutaneous implants can lead to device failure and be life-threatening. To solve this issue, we constructed a carboxymethyl dextran- (CMD-) based nanomicelle antibacterial coating on the microarc-oxidized titanium (MAO-Ti) surface (described in the supplementary file). The self-assembled CMD-based nanomicelles and octadecylamine (ODA) were developed as a drug carrier and loaded with minocycline (MC). The characterization and stability of the MC-loaded nanomicelles were determined. The surface roughness, hydrophilicity, and drug release property of the coatings were also investigated. Our findings showed that the cross-linked MC-loaded nanomicelles (MC@(ODA-CMD)CL) were more stable than the uncross-linked nanomicelles. Moreover, MC@(ODA-CMD)CL was successfully incorporated into the pores of MAO-Ti, which significantly increased the surface hydrophilicity of the coatings without influencing their surface roughness. In addition, the coatings demonstrated a sustained release time of 360 h, with a cumulative release rate reaching 86.6%. Staphylococcus aureus (S. aureus) was used to determine the antibacterial properties of the coatings, and human skin fibroblasts were seeded on them to investigate their biocompatibility. The results showed that the coatings significantly reduced the number of adhesive S. aureus and promoted the viability, adhesion, and morphology of the human skin fibroblasts compared to smooth titanium (S-Ti) sheets. In conclusion, MC-loaded CMD-based nanomicelles coated on MAO-Ti surface (MC@(ODA-CMD)CL-Ti) demonstrated sustained-release properties, excellent antibacterial properties and biocompatibility, and promising potential as coatings for percutaneous implants.
Peri-implantitis occurs at a significant rate, which is the leading cause of implant failure. The main reason for this unwanted complication is bacterial invasion and biofilm formation. To reduce the incidence of peri-implantitis, we constructed a carboxymethyl dextran (CMD) based nanomicelles antibacterial coating on microarc-oxidized titanium (MAO-Ti) surface. After cross-linking, the drug-loaded nanomicelles were spherical with a particle size of 130nm and uniformly dispersed. Zeta potential was negative, and the absolute value was greater than 10 mV, effectively avoiding micelles aggregation. It was observed by dynamic light scattering (DLS) that the stability of nanomicelles was significantly improved after cross-linking. The hemolysis rate of micelles was less than 5%, and the overall survival rate of human umbilical vein endothelial cells was more than 90%. After being coated on MAO-Ti surface, the cumulative drug release rate of drug-loaded nanomicelles reached 86.6% after 360 hours. Fluorescence staining of immobilized bacteria showed more dead bacteria on the coating surface, and the number of live bacteria was significantly reduced. It was concluded that dextran-based nanomicelles, which showed long-term drug release properties and excellent biocompatibility, are potential drug carriers for fabricating antibacterial coating on titanium surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.