Traditional wound dressings mainly participate in the passive healing processes and are rarely engaged in active wound healing by stimulating skin cell behaviors. Electrical stimulation (ES) has been known to regulate skin cell behaviors. Herein, a series of multifunctional hydrogels based on regenerated bacterial cellulose (rBC) and MXene (Ti 3 C 2 T x) are first developed that can electrically modulate cell behaviors for active skin wound healing under external ES. The composite hydrogel with 2 wt% MXene (rBC/MXene-2%) exhibits the highest electrical conductivity and the best biocompatibility. Meanwhile, the rBC/MXene-2% hydrogel presents desired mechanical properties, favorable flexibility, good biodegradability, and high water-uptake capacity. An in vivo study using a rat full-thickness defect model reveals that this rBC/MXene hydrogel exhibits a better therapeutic effect than the commercial Tegaderm film. More importantly, in vitro and in vivo data demonstrate that coupling with ES, the hydrogel can significantly enhance the proliferation activity of NIH3T3 cells and accelerate the wound healing process, as compared to non-ES controls. This study suggests that the biodegradable and electroactive rBC/MXene hydrogel is an appealing candidate as a wound dressing for skin wound healing, while also providing an effective synergistic therapeutic strategy for accelerating wound repair process through coupling ES with the hydrogel dressing.
Superhydrophobic
surfaces repel water and other liquids such as tissue fluid, blood,
urine, and pus, which can open up a new avenue for the development
of biomedical devices and has led to promising advances across diverse
fields, including plasma separator devices, blood-repellent sensors,
vascular stents, and heart valves. Here, the fabrication of superhydrophobic
liquid–solid contact triboelectric nanogenerators (TENGs) and
their biomedical applications as droplet sensors are reported. Triboelectrification
energy can be captured and released when droplets are colliding or
slipping on the superhydrophobic layer. The developed superhydrophobic
TENG possesses multiple advantages in terms of simple fabrication,
bendability, self-cleaning, self-adhesiveness, high sensitivity, and
repellency to not only water but also a variety of solutions, including
blood with a contact angle of 158.6°. As a self-powered sensor,
the developed prototypes of a drainage bottle droplet sensor and a
smart intravenous injection monitor based on the superhydrophobic
liquid–solid contact TENG can monitor the clinical drainage
operation and intravenous infusion in real time, respectively. These
prototypes suggest the potential merit of this superhydrophobic liquid–solid
contact TENG in clinical application, paving the way for accurately
monitoring clinical drainage operations and intravenous injection
or blood transfusion in the future.
In order to overcome drug resistant and enhance antitumor activity of DOX, a new pH-sensitive micelle (DOX/DQA-DOX@DSPE-hyd-PEG-AA) was prepared to simultaneously deliver DOX to nucleus and mitochondria. Drug released from DOX/DQA-DOX@DSPE-hyd-PEG-AA showed a pH-dependent manner. DOX/DQA-DOX@DSPE-hyd-PEG-AA induced the depolarization of mitochondria and apoptosis in MDA-MB-231/ADR cells and A549 cells, which resulted in the high cytotoxicity of DOX/DQA-DOX@DSPE-hyd-PEG-AA against MDA-MB-231/ADR cells and A549 cells. Confocal microscopy confirmed that DOX/DQA-DOX@DSPE-hyd-PEG-AA simultaneously delivered DQA-DOX and DOX to the mitochondria and nucleus of tumor cell. After DOX/DQA-DOX@DSPE-hyd-PEG-AA was injected to the tumor-bearing nude mice by the tail vein, DOX was mainly found in tumor tissue. But DOX was widely distributed in the whole body after the administration of free DOX. Compared with free DOX, the same dose of DOX/DQA-DOX@DSPE-hyd-PEG-AA significantly inhibited the growth of DOX-resistant tumor in tumor-bearing mice without obvious systemic toxicity. Therefore, dual subcellular compartment delivery of DOX greatly enhanced the antitumor activity of DOX on DOX-resistant tumor. DOX/DQA-DOX@DSPE-hyd-PEG-AA has the potential in target therapy for DOX-resistant tumor.
A PEG-based, folate mediated, active tumor targeting drug delivery system using DOX-hyd-PEG-FA nanoparticles (NPs) were prepared. DOX-hyd-PEG-FA NPs showed a significantly faster DOX release in pH 5.0 medium than in pH 7.4 medium. Compared with DOX-hyd-PEG NPs, DOX-hyd-PEG-FA NPs increased the intracellular accumulation of DOX and showed a DOX translocation from lysosomes to nucleus. The cytotoxicity of DOX-hyd-PEG-FA NPs on KB cells was much higher than that of free DOX, DOX-ami-PEG-FA NPs and DOX-hyd-PEG NPs. The cytotoxicity of DOX-hyd-PEG-FA NPs on KB cells was attenuated in the presence of exogenous folic acid. The IC50 of DOX-hyd-PEG-FA NPs and DOX-hyd-PEG NPs on A549 cells showed no significant difference. After DOX-hyd-PEG-FA NPs were intravenously administered, the amount of DOX distributed in tumor tissue was significantly increased, while the amount of DOX distributed in heart was greatly decreased as compared with free DOX. Compared with free DOX, NPs yielded improved survival rate, prolonged life span, delayed tumor growth and reduced the cardiotoxicity in tumor bearing mice model. These results indicated that the acid sensitivity, passive and active tumor targeting abilities were likely to act synergistically to enhance the drug delivery efficiency of DOX-hyd-PEG-FA NPs. Therefore, DOX-hyd-PEG-FA NPs are a promising drug delivery system for targeted cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.