In order to overcome drug resistant and enhance antitumor activity of DOX, a new pH-sensitive micelle (DOX/DQA-DOX@DSPE-hyd-PEG-AA) was prepared to simultaneously deliver DOX to nucleus and mitochondria. Drug released from DOX/DQA-DOX@DSPE-hyd-PEG-AA showed a pH-dependent manner. DOX/DQA-DOX@DSPE-hyd-PEG-AA induced the depolarization of mitochondria and apoptosis in MDA-MB-231/ADR cells and A549 cells, which resulted in the high cytotoxicity of DOX/DQA-DOX@DSPE-hyd-PEG-AA against MDA-MB-231/ADR cells and A549 cells. Confocal microscopy confirmed that DOX/DQA-DOX@DSPE-hyd-PEG-AA simultaneously delivered DQA-DOX and DOX to the mitochondria and nucleus of tumor cell. After DOX/DQA-DOX@DSPE-hyd-PEG-AA was injected to the tumor-bearing nude mice by the tail vein, DOX was mainly found in tumor tissue. But DOX was widely distributed in the whole body after the administration of free DOX. Compared with free DOX, the same dose of DOX/DQA-DOX@DSPE-hyd-PEG-AA significantly inhibited the growth of DOX-resistant tumor in tumor-bearing mice without obvious systemic toxicity. Therefore, dual subcellular compartment delivery of DOX greatly enhanced the antitumor activity of DOX on DOX-resistant tumor. DOX/DQA-DOX@DSPE-hyd-PEG-AA has the potential in target therapy for DOX-resistant tumor.
Some evidence suggests that aluminum is one of the risk factors in Alzheimer's disease (AD); however, there is no study on the relationship between the synaptic configuration changes and aluminum uptake. In the present study, 40 rats were fed with water solution aluminum for 3 months and the effects of aluminum on the Gray's type I synapses in hippocampus and frontal cortex of rats were quantitatively investigated by electron microscopy. The effects of aluminum on the ability to learn and memorize were tested by a Morris water maze. Length of synaptic active zone, width of synaptic cleft, curvature of synapse, and thickness of postsynaptic density (PSD) were measured in the interface of synapses by the IBM-PC microimage processing system. The flat synapse, positive and negative curvature synapses, as well as the perforated synapse were classified and counted according to the type of the interfacial structure of a synapse. The amounts of aluminum deposited in brain were measured with an atomic absorption spectrophotometer. Our results show that the time and the distance taken by the rats to find the water maze increased after the rats were fed aluminum for 3 months. As compared with control, the synapses in aluminum-induced rats exhibited the following significant changes: decreased thickness of PSD (P < 0.01), increased width of synaptic cleft (P < 0.05), increased numbers of flat synapse, decreased numbers of positive curvature synapse and perforated synapse, and significantly increased aluminum deposits in hippocampus and frontal cortex (P < 0.01). Our study indicates that aluminum can decrease the ability of rats to learn and memorize and induce their synaptic configuration changes. These changes may be related to synaptic efficacy and may be one of the mechanisms for AL to induce AD.
A PEG-based, folate mediated, active tumor targeting drug delivery system using DOX-hyd-PEG-FA nanoparticles (NPs) were prepared. DOX-hyd-PEG-FA NPs showed a significantly faster DOX release in pH 5.0 medium than in pH 7.4 medium. Compared with DOX-hyd-PEG NPs, DOX-hyd-PEG-FA NPs increased the intracellular accumulation of DOX and showed a DOX translocation from lysosomes to nucleus. The cytotoxicity of DOX-hyd-PEG-FA NPs on KB cells was much higher than that of free DOX, DOX-ami-PEG-FA NPs and DOX-hyd-PEG NPs. The cytotoxicity of DOX-hyd-PEG-FA NPs on KB cells was attenuated in the presence of exogenous folic acid. The IC50 of DOX-hyd-PEG-FA NPs and DOX-hyd-PEG NPs on A549 cells showed no significant difference. After DOX-hyd-PEG-FA NPs were intravenously administered, the amount of DOX distributed in tumor tissue was significantly increased, while the amount of DOX distributed in heart was greatly decreased as compared with free DOX. Compared with free DOX, NPs yielded improved survival rate, prolonged life span, delayed tumor growth and reduced the cardiotoxicity in tumor bearing mice model. These results indicated that the acid sensitivity, passive and active tumor targeting abilities were likely to act synergistically to enhance the drug delivery efficiency of DOX-hyd-PEG-FA NPs. Therefore, DOX-hyd-PEG-FA NPs are a promising drug delivery system for targeted cancer therapy.
BackgroundmicroRNA (miR)-181a has been reported to be downregulated in Parkinson’s disease (PD), but the regulatory mechanism of miR-181a on neuron apoptosis and autophagy is still poorly understood. We aimed to investigate the neuroprotective effects of miR-181a on PD in vitro.Material/MethodsHuman SK-N-SH neuroblastoma cells were incubated with different concentrations of 1-methyl-4-phenylpyridinium ion (MPP+) to induce the PD model. The expression of miR-181a was then analyzed. After transfection with miR-181a mimic or scramble following MPP+ treatment, the expression of autophagy protein markers (LC3II, LC3I, and Beclin 1) and p38 mitogen-activated protein kinase (MAPK)/c-Jun N-terminal kinases (JNK) signaling proteins (p-p38, p38, p-JNK, and JNK) and cell apoptosis were detected. Furthermore, the cells were transfected with miR-181a inhibitor and cultured in the presence or absence of p38 inhibitor SB203582 or JNK inhibitor SP600125, and the cell apoptosis was tested again.ResultsThe expression of miR-181a was gradually decreased with the increase of MPP+ concentration (P<0.05, P<0.01, or P<0.001). Overexpression of miR-181a significantly decreased the LC3II/LC3I ratio, Beclin 1 expression, cell apoptosis, and the expression of p-p38 and p-JNK compared to the MPP+ + miR-181a scramble group (all P<0.05). In addition, we observed that SB203582 or SP600125 showed no effects on cell apoptosis, but the effects of miR-181a inhibitor on cell apoptosis were reversed by administration of SB203582 or SP600125 compared to the scramble group (P<0.05).ConclusionsOur results suggest that miR-181a regulates apoptosis and autophagy in PD by inhibiting the p38 MAPK/JNK pathway.
The experiment aims to increase antitumor activity while decreasing the systemic toxicity of doxorubicin (DOX). Charge reversible and mitochondria/nucleus dual target lipid hybrid nanoparticles (LNPs) was prepared. The in vitro experimental results indicated that LNPs released more amount of DOX in acidic environment and delivered more amount of DOX to the mitochondria and nucleus of tumor cells than did free DOX, which resulted in the reduction of mitochondrial membrane potential and the enhancement of cytotoxicity of LNPs on tumor cells. Furthermore, the in vivo experimental results indicated that LNPs delivered more DOX to tumor tissue and significantly prolonged the retention time of DOX in tumor tissue as compared with free DOX, which consequently resulted in the high antitumor activity and low systemic toxicity of LNPs on tumor-bearing nude mice. The above results indicated that charge reversible mitochondria/nucleus dual targeted lipid hybrid nanoparticles greatly enhanced therapeutic efficacy of DOX for treating lung cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.