This paper presents a numerical study of the effects of different shapes of deterministic microasperities in sliding surface lubrication when hydrodynamic films are found. Positive (protruding) and negative (recessed) asperities of constant height (depth) are considered with circular, square, diamond, hexagonal and triangular cross-sections. Of particular interest is the impact of asperity/cavity cross-sectional geometry on friction and leakage, which has importance in sealing applications. The results indicate that the friction coefficient is insensitive to asperity/cavity shape, but quite sensitive to the size of the cross-section. By contrast, leakage rates are found to be quite sensitive to both cross-sectional shape and size, with triangular asperities giving the smallest leakage rate and square asperities giving a largest leakage rate. The minimum coefficient of friction for all shapes is found to occur at an asperity area fraction of 0.2 for positive asperities and 0.7 for negative asperities. Finally, the results indicate the existence of a critical asperity area fraction where the performance curves for positive and negative asperities cross over. These cross-over points are identified for friction coefficient and leakage rate.
The initial yielding behavior due to the indentation and friction process between an elastic cylindrical surface and hard coating/functionally graded substrate system is analyzed by finite element modeling. A thin hard DLC film deposited on a soft Ti–6Al–4V alloy substrate is considered as a model system. Two functional gradient substrate conditions are considered: (i) a gradient in yield strength and (ii) a gradient in elastic modulus. In both cases, appropriate gradients result in significant benefits to the reliability of the coated system compared to the case of an ungraded substrate. The results indicate that systems with an appropriate gradient in yield strength: (i) can withstand significantly higher applied contact stresses (3–12 times higher for the present model system), (ii) shift the location of the initial yield point deeper into the substrate (at least by a factor of 2 for the present model system), and (iii) can use coatings of greater thickness. Finally, the results indicate that an appropriate gradient in elastic modulus results in a dramatic reduction in equivalent stress on the contact surface and at the interface as compared to the ungraded case. The present results suggest distinct benefits to the durability of coated systems when using a substrate with functionally graded properties. [S0742-4787(00)02002-6]
Deterministic micro asperities show potential for enhancement of lubrication in conformal contacts as found in many bearing and seal designs. Several manufacturing methods have been proposed for deterministic micro asperities. Of these, laser texturing has emerged as the most viable option. This paper proposes the LIGA MEMs manufacturing method as an alternative. Using LIGA, surfaces with patterned micron sized surface features of arbitrary cross section (cylindrical, hex, triangular, etc.) can be fabricated from electroplated nickel, gel-cast silicon nitride or plastic. The resulting asperities can be positive (protuberances) or negative (recesses) and can have heights (depths) from 1–1000 microns and be patterned over surface areas up to about 150 mm × 150 mm. In this paper, the LIGA method is used to fabricate a sample thrust bearing surface with a hexagonal array of positive asperities. The resulting asperities are 550 μm in average diameter, 165 μm in edge-to-edge spacing and have heights of 3–100μm. Surface metrology indicates sub-micron accuracy of form and 13 nm Ra roughness on the asperity tops (land). Tribology testing in a non-pressurized oil bath indicates full film conditions and shows a 14–22% reduction in friction coefficient for a thrust surface covered with the micro asperities. A model confirms the experimental trends and indicates the potential to further reduce the friction coefficient by about 60% through optimization of the asperity geometry and layout.
A numerical analysis is conducted to investigate the elastohydrodynamic effect of deterministic microasperities on the shaft of a lip seal. Various geometries of microasperities (triangular, square, hexagonal, and circular) are put into a 100×100μm2 unit cell and are investigated using Reynolds equation. For each shape, the area fraction of the microasperity is varied between 0.2 and 0.8, and the asperity height is varied between 0.3μm and 5μm. The calculation for load capacity and friction coefficient indicates that there are values for asperity height, where the load capacity and friction coefficient are optimized. These optimum heights were reached at 1–3μm. Although the lip seal surface is considered to be smooth, reverse pumping can still be obtained using an oriented triangular design. The Couette flow rate for this asperity showed lubricant is reverted back toward the seal side 2.6 times more than using a conventional lip seal. The addition of microasperities to the shaft surface shows significant improvement in lubrication characteristics for the lip seal in the form of a simultaneous reduction in friction coefficient and increase in the reverse pumping rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.