Understanding brain structure-function relationships, and their development and evolution, is central to neuroscience research. Here, we show that morphological differences in posterior cingulate cortex (PCC), a hub of functional brain networks, predict individual differences in macroanatomical, microstructural, and functional features of PCC. Manually labeling 4511 sulci in 572 hemispheres, we found a shallow cortical indentation (termed the inframarginal sulcus;
ifrms
) within PCC that is absent from neuroanatomical atlases yet colocalized with a focal, functional region of the lateral frontoparietal network implicated in cognitive control. This structural-functional coupling generalized to meta-analyses consisting of hundreds of studies and thousands of participants. Additional morphological analyses showed that unique properties of the
ifrms
differ across the life span and between hominoid species. These findings support a classic theory that shallow, tertiary sulci serve as landmarks in association cortices. They also beg the question: How many other cortical indentations have we missed?
Understanding brain structure-function relationships, and their development and evolution, is central to neuroscience research. Here, we show that morphological differences in posterior cingulate cortex (PCC), a hub of functional brain networks, predict individual differences in macroanatomical, microstructural, and functional features of PCC. Manually labeling 4,319 sulci in 552 hemispheres, we discovered a consistently localized shallow cortical indentation (termed the inframarginal sulcus; ifrms) within PCC that is absent from neuroanatomical atlases, yet co-localized with a region within the cognitive control, but not default mode, network. Morphological analyses in humans and chimpanzees showed that unique properties of the ifrms differ across the lifespan and between hominoid species. Intriguingly, the consistency of the ifrms also debunks the uniqueness of the morphology of Einstein’s PCC. These findings support a classic theory that shallow, tertiary sulci serve as landmarks in association cortices. They also beg the question: how many other cortical indentations have we missed?
Highlights d Hippocampal ripple detection is improved by time-frequency verification d Ripples occur in human hippocampus during various awake cognitive states at a low rate d Ripple rates are stable across perceptual and associative memory tasks d Ripple rates are enhanced during complex autobiographical memory retrieval
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.