Background The possibility that mu opioid agonists can influence cancer recurrence is a subject of recent interest. Epidemiologic studies suggested that there were differences in cancer recurrence in breast and prostate cancer contingent on anesthetic regimens. In this study, we identify a possible mechanism for these epidemiologic findings based on mu opioid receptor (MOR) regulation of Lewis lung carcinoma (LLC) tumorigenicity in cell and animal models. Methods We utilized human lung tissue and human non-small cell lung cancer (NSCLC) cell lines and evaluated MOR expression using immunoblot and immunohistochemical analysis. LLC cells were treated with the peripheral opioid antagonist methylnalnaltrexone (MNTX) or MOR shRNA and evaluated for proliferation, invasion and soft agar colony formation in vitro and primary tumor growth and lung metastasis in C57BL/6 and MOR knockout mice using Visen FMT imaging and immunohistochemical analysis. Results We provide several lines of evidence that the MOR may be a potential target for lung cancer, a disease with high mortality and few treatment options. We first observed that there is ~5 to 10 fold increase in MOR expression in lung samples from patients with NSCLC and in several human NSCLC cell lines. The MOR agonists morphine and DAMGO increased in vitro LLC cell growth. Treatment with MNTX or silencing MOR expression inhibited LLC invasion and anchorage-independent growth by 50–80%. Injection of MOR silenced LLC lead to a ~65% reduction in mouse lung metastasis. In addition, MOR knockout mice do not develop significant tumors when injected with LLC as compared to wildtype controls. Finally, continuous infusion of the peripheral opioid antagonist methylnaltrexone attenuates primary LLC tumor growth and reduces lung metastasis. Conclusions Taken together, our data suggests a possible direct effect of opiates on lung cancer progression, and provides a plausible explanation for the epidemiologic findings. Our observations further suggest a possible therapeutic role for opioid antagonists.
Estradiol enhances plasticity and survival of the injured brain. Our previous work demonstrates that physiological levels of estradiol protect against cerebral ischemia in the young and aging brain through actions involving estrogen receptors (ERs) and alterations in gene expression. The major goal of this study was to establish mechanisms of neuroprotective actions induced by low levels of estradiol. We first examined effects of estradiol on the time-dependent evolution of ischemic brain injury. Because estradiol is known to influence apoptosis, we hypothesized that it acts to decrease the delayed phase of cell death observed after middle cerebral artery occlusion (MCAO). Furthermore, because ERs are pivotal to neuroprotection, we examined the temporal expression profiles of both ER subtypes, ERalpha and ERbeta, after MCAO and delineated potential roles for each receptor in estradiol-mediated neuroprotection. We quantified cell death in brains at various times after MCAO and analyzed ER expression by RT-PCR, in situ hybridization, and immunohistochemistry. We found that during the first 24 h, the mechanisms of estradiol-induced neuroprotection after MCAO are limited to attenuation of delayed cell death and do not influence immediate cell death. Furthermore, we discovered that ERs exhibit distinctly divergent profiles of expression over the evolution of injury, with ERalpha induction occurring early and ERbeta modulation occurring later. Finally, we provide evidence for a new and functional role for ERalpha in estradiol-mediated protection of the injured brain. These findings indicate that physiological levels of estradiol protect against delayed cell death after stroke-like injury through mechanisms requiring ERalpha.
Neurogenesis persists throughout life under normal and degenerative conditions. The adult subventricular zone (SVZ) generates neural stem cells capable of differentiating to neuroblasts and migrating to the site of injury in response to brain insults. In the present study, we investigated whether estradiol increases neurogenesis in the SVZ in an animal model of stroke to potentially promote the ability of the brain to undergo repair. Ovariectomized C57BL/6J mice were implanted with capsules containing either vehicle or 17beta-estradiol, and 1 week later they underwent experimental ischemia. We utilized double-label immunocytochemistry to identify the phenotype of newborn cells (5-bromo-2'-deoxyuridine-labeled) with various cellular markers; doublecortin and PSA-NCAM as the early neuronal marker, NeuN to identify mature neurons, and glial fibrillary acidic protein to identify astrocytes. We report that low physiological levels of estradiol treatment, which exert no effect in the uninjured state, significantly increase the number of newborn neurons in the SVZ following stroke injury. This effect of estradiol is limited to the dorsal region of the SVZ and is absent from the ventral SVZ. The proliferative actions of estradiol are confined to neuronal precursors and do not influence gliosis. Furthermore, we show that both estrogen receptors alpha and beta play pivotal functional roles, insofar as knocking out either of these receptors blocks the ability of estradiol to increase neurogenesis. These findings clearly demonstrate that estradiol stimulates neurogenesis in the adult SVZ, thus potentially facilitating the brain to remodel and repair after injury.
Estradiol is a known neurotrophic and neuroprotective factor. Our previous work demonstrated that replacement with physiological concentrations of estradiol protects the cortex against middle cerebral artery occlusion (MCAO)-induced cell death. The cerebral cortex exhibits caspase-dependent programmed cell death (PCD) in many models of focal cerebral ischemia. We hypothesized that estradiol attenuates PCD during stroke injury. The current study explored the temporospatial pattern of markers of PCD, their relationship to the evolution of injury, and their modulation by estradiol. Rats were ovariectomized and treated with either estradiol or vehicle. One week later, rats underwent MCAO, and brains were collected at 1, 4, 8, 16, and 24 hr. We assessed the temporospatial evolution of infarction volume, DNA fragmentation, and levels of spectrin cleavage products in ischemic cortex. Estradiol led to a delay and attenuation of injury-mediated DNA fragmentation as early as 8 hr after MCAO. Estradiol also dramatically reduced the level of the 120 kDa caspase-mediated spectrin breakdown product (SBDP120) at 4 hr but not at 8 or 16 hr. The SBDP150, produced by caspase and calpain, showed peak levels at 16 hr but was not altered by estradiol. These results strongly suggest that estradiol protects the ischemic cortex by attenuating PCD, thereby reducing caspase activity, DNA fragmentation, and subsequently, overall cell death. These studies deepen our understanding of the mechanisms underlying estrogen-mediated neuroprotection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.