Rising anthropogenic CO 2 in the atmosphere is accompanied by an increase in oceanic CO 2 and a concomitant decline in seawater pH (ref. 1). This phenomenon, known as ocean acidification (OA), has been experimentally shown to impact the biology and ecology of numerous animals and plants 2 , most notably those that precipitate calcium carbonate skeletons, such as reef-building corals 3 . Volcanically acidified water at Maug, Commonwealth of the Northern Mariana Islands (CNMI) is equivalent to near-future predictions for what coral reef ecosystems will experience worldwide due to OA. We provide the first chemical and ecological assessment of this unique site and show that acidification-related stress significantly influences the abundance and diversity of coral reef taxa, leading to the often-predicted shift from a coral to an algae-dominated state 4,5 . This study provides field evidence that acidification can lead to macroalgae dominance on reefs.Coral reefs contain the highest concentration of biodiversity in the marine realm, with abundant flora and fauna that form the backbone of complex and dynamic ecosystems 6 . From an anthropocentric standpoint, coral reefs provide valuable goods and services, supporting fisheries and tourism, and protect shorelines from storms 7 . Recently, widespread coral mortality has led to the flattening of reef frameworks and the loss of essential habitat 4 . This trend will be accelerated by ocean acidification (OA), as calcification is impaired, and dissolution is accelerated 8,9 . Furthermore, experimental evidence suggests that OA could enhance the growth 10 and competitive ability of fleshy macroalgae 11 . This OA-induced shift in the competitive balance between corals and algae could exacerbate direct effects of OA on calcifying reef species 12 and lead to ecosystem shifts favouring non-reef-forming algae over coral 4,5 . Understanding the individual responses of taxa to OA, as well as alteration of multi-species assemblages, is therefore critical to predicting ecosystem persistence and managing reef health in an era of global change.At present, much of what is known concerning the impacts of OA on coral reef biota has been laboratory-based experimental work focused on the responses of select taxa 2 . This has been expanded to mesocosm-based studies, allowing manipulation of groups of organisms and investigation of community responses 13 .Although these multi-species experimental studies are vital, they cannot recreate the variability (physical, chemical, biological) of real-world reef systems 14 . In an effort to overcome the limitations of laboratory studies, real-world low-saturation-state (Ω) sites have been investigated. In the eastern Pacific, nutrient and CO 2 -enriched upwelled waters impact coral calcification and the precipitation of carbonate cements, influencing the distribution of reefs 15 . In Mexico, freshwater springs depress Ω, influencing coral calcification and species distributions 16 . In Palau, restricted circulation and biological activity contribute to ...
Satellite monitoring of thermal stress on coral reefs has become an essential component of reef management practice around the world. A recent development by the U.S. National Oceanic and Atmospheric Administration's Coral Reef Watch (NOAA CRW) program provides daily global monitoring at 5 km resolution-at or near the scale of most coral reefs. In this paper, we introduce two new monitoring products in the CRW Decision Support System for coral reef management: Regional Virtual Stations, a regional synthesis of thermal stress conditions, and Seven-day Sea Surface Temperature (SST) Trend, describing recent changes in temperature at each location. We describe how these products provided information in support of management activities prior to, during and after the 2014 thermal stress event in the Commonwealth of the Northern Mariana Islands (CNMI). Using in situ survey data from this event, we undertake the first quantitative comparison between 5 km satellite monitoring products and coral bleaching observations. Analysis of coral community characteristics, historical temperature conditions and thermal stress revealed a strong influence of coral biodiversity in the patterns of observed bleaching. This resulted in a model based on thermal stress and generic richness that explained 97% of the variance in observed bleaching. These findings illustrate the importance of using local benthic characteristics to interpret the level of impact from thermal stress exposure. In an era of continuing climate change, accurate monitoring of thermal stress and prediction of coral bleaching are essential for stakeholders to direct resources to the most effective management actions to conserve coral reefs.
International audienceEcological resilience assessments are an important part of resilience-based management (RBM) and can help prioritize and target management actions. Use of such assessments has been limited due to a lack of clear guidance on the assessment process. This study builds on the latest scientific advances in RBM to provide that guidance from a resilience assessment undertaken in the Commonwealth of the Northern Mariana Islands (CNMI). We assessed spatial variation in ecological resilience potential at 78 forereef sites near the populated islands of the CNMI: Saipan, Tinian/Aguijan, and Rota. The assessments are based on measuring indicators of resilience processes and are combined with information on anthropogenic stress and larval connectivity. We find great spatial variation in relative resilience potential with many high resilience sites near Saipan (5 of 7) and low resilience sites near Rota (7 of 9). Criteria were developed to identify priority sites for six types of management actions (e.g., conservation, land-based sources of pollution reduction, and fishery management and enforcement) and 51 of the 78 sites met at least one of the sets of criteria. The connectivity simulations developed indicate that Tinian and Aguijan are each roughly 10 × the larvae source that Rota is and twice as frequent a destination. These results may explain the lower relative resilience potential of Rota reefs and indicates that actions in Saipan and Tinian/Aguijan will be important to maintaining supply of larvae. The process we describe for undertaking resilience assessments can be tailored for use in coral reef areas globally and applied to other ecosystems
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.