The sequences of the nontranscribed spacers (NTS) of cloned ribosomal DNA (rDNA) units from both Saccharomyces cerevisiae and Saccharomyces carlsbergensis were determined. The NTS sequences of both species were found to be 93% homologous. The major disparities comprise different frequencies of reiteration of short tracts of six to sixteen basepairs. Most of these reiterations are found within the 1100 basepairs long NTS between the 3'-ends of 26S and 5S rRNA (NTS1). The NTS between the starts of 5S rRNA and 37S pre-rRNA (NTS2) comprises about 1250 basepairs. The first 800 basepairs of NTS NTS2 (adjacent to the 5S rRNA gene) are virtually identical in both strains whereas a variable region is present at about 250 basepairs upstream of the RNA polymerase A transcription start. In contrast to the situation in Drosophila and Xenopus no reiterations of the putative RNA polymerase A promoter are present within the yeast NTS. The strands of the yeast NTS reveal a remarkable bias of G and C-residues. Yeast rDNA was previously shown to contain a sequence capable of autonomous replication (ARS) (Szostak, J.W. and Wu, R (1979), Plasmid 2, 536-554). This ARS, which may correspond to a chromosomal origin of replication, was located on a fragment of 570 basepairs within NTS2.
Transcript levels of several key genes responsible for cephalosporin C (CPC) biosynthesis and transport have been determined using qPCR analysis of Acremonium chrysogenum strains differing more than 100-fold in the levels of CPC production. The expression of genes involved in the final steps of CPC production was significantly increased in the high-producing RNCM F-4081D strain compared to the wild-type ATCC 11550 strain. Different dynamics in the course of cultivation was observed for the genes known to be involved in the transport of CPC intermediates between subcellular compartments. Overall, comparative expression analysis showed balanced and fine-tuned expression of the genes responsible for CPC biosynthesis and transport in the genetically selected A. chrysogenum RNCM F-4081D strain, reflecting its capacity to overcome known CPC biosynthesis "bottlenecks" and produce CPC of high yield and purity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.