Arbuscular mycorrhizal fungi alleviate drought stress in their host plants via the direct uptake and transfer of water and nutrients through the fungal hyphae to the host plants. To quantify the contribution of the hyphae to plant water uptake, a new split-root hyphae system was designed and employed on barley grown in loamy soil inoculated with Glomus intraradices under well-watered and drought conditions in a growth chamber with a 14-h light period and a constant temperature (15 degrees C; day/night). Drought conditions were initiated 21 days after sowing, with a total of eight 7-day drying cycles applied. Leaf water relations, net photosynthesis rates, and stomatal conductance were measured at the end of each drying cycle. Plants were harvested 90 days after sowing. Compared to the control treatment, the leaf elongation rate and the dry weight of the shoots and roots were reduced in all plants under drought conditions. However, drought resistance was comparatively increased in the mycorrhizal host plants, which suffered smaller decreases in leaf elongation, net photosynthetic rate, stomatal conductance, and turgor pressure compared to the non-mycorrhizal plants. Quantification of the contribution of the arbuscular mycorrhizal hyphae to root water uptake showed that, compared to the non-mycorrhizal treatment, 4 % of water in the hyphal compartment was transferred to the root compartment through the arbuscular mycorrhizal hyphae under drought conditions. This indicates that there is indeed transport of water by the arbuscular mycorrhizal hyphae under drought conditions. Although only a small amount of water transport from the hyphal compartment was detected, the much higher hyphal density found in the root compartment than in the hyphal compartment suggests that a larger amount of water uptake by the arbuscular mycorrhizal hyphae may occur in the root compartment.
The benefits of mycorrhizas for host plants are well known for a large number of species. However, experimental evaluations of the hyphal contribution to the total water uptake and the assessment of the bulk flow velocity in the hyphae are so far contradictory. Barley (Hordeum vulgaris L. Scarlet) with the inoculum Glomus intraradices was grown in a split plant-hyphal chamber with a 5 mm air gap. During the preparation of the chambers with a loamy-silt soil, water content sensors were inserted in each of the plant and the hyphal compartments. These sensors allow nondestructive measurements with high resolution. In total, 8 drying periods with a length of several days were applied with repeated watering following each drying period. A clear decline in water content in the hyphal compartment during each drying period supports the ability of hyphae to transfer water into the plant compartment. The difference between the decline in the hyphal compartment with and without arbuscular mycorrhyzal fungi is significant at the p< 0.000001 level. The direct and indirect hyphal contribution to the total water uptake was estimated to be about 20%. The application of capacitance sensors for water content determination with a special geometry adapted to the plant-hyphal chambers allows the evaluation of the hyphal water flow with high accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.