The photon counting efficiency of various CCD based cameras was studied as a function of xray energy and exposure. A pair of Spectral Instruments Model 800 CCD cameras fitted with 16 µm thick back-illuminated CCDs were calibrated at low x-ray energy using two well established histogram methods, a standard pixel for pixel histogram and the single pixel event histogram method. In addition, two new thick substrate CCDs were evaluated for use at high energy. One was a commercially available Princeton Instruments LCX1300 deep depletion CCD camera while the other was a custom designed 650 µm thick partially depleted CCD fitted to a SI 800 camera body. It is shown that at high x-ray energy, only a pixel-summing algorithm was able to derive spectral data due to the spreading of x-ray events over many pixels in the thicker substrate CCDs. This paper will describe the different algorithms used to extract spectra and the absolute detection efficiencies using these algorithms. These detectors will be very useful to detect high-energy x-ray photons from high-intensity short pulse laser interactions.
DT neutron yield (Y(n)), ion temperature (T(i)), and down-scatter ratio (dsr) determined from measured neutron spectra are essential metrics for diagnosing the performance of inertial confinement fusion (ICF) implosions at the National Ignition Facility (NIF). A suite of neutron-time-of-flight (nTOF) spectrometers and a magnetic recoil spectrometer (MRS) have been implemented in different locations around the NIF target chamber, providing good implosion coverage and the complementarity required for reliable measurements of Y(n), T(i), and dsr. From the measured dsr value, an areal density (ρR) is determined through the relationship ρR(tot) (g∕cm(2)) = (20.4 ± 0.6) × dsr(10-12 MeV). The proportionality constant is determined considering implosion geometry, neutron attenuation, and energy range used for the dsr measurement. To ensure high accuracy in the measurements, a series of commissioning experiments using exploding pushers have been used for in situ calibration of the as-built spectrometers, which are now performing to the required accuracy. Recent data obtained with the MRS and nTOFs indicate that the implosion performance of cryogenically layered DT implosions, characterized by the experimental ignition threshold factor (ITFx), which is a function of dsr (or fuel ρR) and Y(n), has improved almost two orders of magnitude since the first shot in September, 2010.
Samples of B4C, amorphous C, chemical-vapor-deposition-diamond C, Si, and SiC were exposed to single 25fs long pulses of 32.5nm free-electron-laser radiation at fluences of up to 2.2J∕cm2. The samples were chosen as candidate materials for x-ray free-electron-laser optics. It was found that the threshold for surface damage is on the order of the fluence required for thermal melting. For larger fluences, the crater depths correspond to temperatures on the order of the critical temperature, suggesting that the craters are formed by two-phase vaporization.
Abstract:The LCLS hard x-ray Free Electron Laser at SLAC reported first lasing in April of 2009. Since then two successful user runs have been completed at the two soft x-ray stations. The first hard x-ray station has started commissioning in July of 2010. Beam diagnostics play an essential role for tuning the machine and delivering the requested beam properties to the users. An overview of the LCLS photon diagnostics will be presented including some selected commissioning results. Plans for future improvements and upgrades will be briefly discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.