Purpose
To evaluate whether a change in fitness is associated with academic outcomes in New York City (NYC) middle school students using longitudinal data, and to evaluate whether this relationship is modified by student household poverty.
Methods
This was a longitudinal study of 83,111 NYC middle school students enrolled between 2006–07 and 2011–12. Fitness was measured as a composite percentile based on three fitness tests and categorized based on change from the previous year. The effect of the fitness change level on academic outcomes, measured as a composite percentile based on state standardized mathematics and English Language Arts test scores, was estimated using a multilevel growth model. Models were stratified by sex and additional models were tested stratified by student household poverty.
Results
For both girls and boys, a substantial increase in fitness from the previous year resulted in a greater improvement in academic ranking than was seen in the reference group (girls: .36 greater percentile point improvement, 95% confidence interval: .09-.63; boys: .38 greater percentile point improvement, 95% confidence interval: .09-.66). A substantial decrease in fitness was associated with a decrease in academics in both boys and girls. Effects of fitness on academics were stronger in high-poverty boys and girls than in low-poverty boys and girls.
Conclusions
Academic rankings improved for boys and girls who increased their fitness level by >20 percentile points relative to other students. Opportunities for increased physical fitness may be important to support academic performance.
BackgroundTreatment algorithms are considered as key to improve outcomes by enhancing the quality of care. This is the first randomized controlled study to evaluate the clinical effect of algorithm-guided treatment in inpatients with major depressive disorder.MethodsInpatients, aged 18 to 70 years with major depressive disorder from 10 German psychiatric departments were randomized to 5 different treatment arms (from 2000 to 2005), 3 of which were standardized stepwise drug treatment algorithms (ALGO). The fourth arm proposed medications and provided less specific recommendations based on a computerized documentation and expert system (CDES), the fifth arm received treatment as usual (TAU). ALGO included 3 different second-step strategies: lithium augmentation (ALGO LA), antidepressant dose-escalation (ALGO DE), and switch to a different antidepressant (ALGO SW). Time to remission (21-item Hamilton Depression Rating Scale ≤9) was the primary outcome.ResultsTime to remission was significantly shorter for ALGO DE (n=91) compared with both TAU (n=84) (HR=1.67; P=.014) and CDES (n=79) (HR=1.59; P=.031) and ALGO SW (n=89) compared with both TAU (HR=1.64; P=.018) and CDES (HR=1.56; P=.038). For both ALGO LA (n=86) and ALGO DE, fewer antidepressant medications were needed to achieve remission than for CDES or TAU (P<.001). Remission rates at discharge differed across groups; ALGO DE had the highest (89.2%) and TAU the lowest rates (66.2%).ConclusionsA highly structured algorithm-guided treatment is associated with shorter times and fewer medication changes to achieve remission with depressed inpatients than treatment as usual or computerized medication choice guidance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.