YB-1 (Y-box binding protein 1) is a multifunctional cold-shock protein that has been implicated in all hallmarks of cancer. Elevated YB-1 protein level was associated with poor prognosis in several types of cancers, including breast cancer (BC), where it is a marker of decreased overall survival (OS) and distant metastasis-free survival across all subtypes. YB-1 is also secreted by different cell types and may act as an extracellular mitogen; however the pathological implications of the secreted form of YB-1 (sYB-1) are unknown. Our purpose was to retrospectively evaluate the association between YB-1 measured by ELISA in serum and disease characteristics and outcomes in patients with BC and bone metastases (BM). In our cohort, sYB-1 was detected in the serum of 22 (50%) patients, and was associated with the presence of extra-bone metastases (p=0.044). Positive sYB-1 was also associated with faster bone disease progression (HR 3.1, 95% CI 1.09–8.95, P=0.033), but no significant differences were observed concerning OS, and time to development of skeletal-related events. Moreover, patients with positive sYB-1 also had higher levels of IL-6, a known osteoclastogenic inducer. Therefore, detection of sYB-1 in patients with BC and BM may indicate a higher tumor burden, in bone and extra-bone locations, and is a biomarker of faster bone disease progression.
ObjectiveBetween 65% and 75% of patients with metastatic breast cancer will have decreased 5-year survival and increased morbidity due to cancer relapse in bone. At this stage of disease treatment is palliative, but tumor-targeted compounds could add to the benefits of anti-resorptive agents, improving clinical outcome. Inhibitor-of-apoptosis proteins (IAPs) are overexpressed in many tumors and second mitochondria-derived activator of caspases (Smac) mimetics have been designed to antagonize IAPs. In this work we explored the use of AT-406, a Smac mimetic, to target the tumor compartment of bone metastases.MethodsEffect of AT-406 on cancer cells apoptosis, expression of IAPs and osteogenic potential was addressed in vitro using the RANK-positive MDA-MB-231 breast cancer cell line. Effect of AT-406 on osteoclastogenesis was determined by inducing the differentiation of the RAW 264.7 mouse monocytic cell line. Osteoclastogenesis was measured by TRAP staining and TRACP 5b quantification.ResultsAT-406 increased apoptosis in MDA-MB-231 breast cancer cells in vitro, and activation of RANK-pathway improved this effect. RANKL stimuli induced a strong increase in c-IAP2. AT-406 increased osteoclast differentiation and activity, by up-regulating the osteogenic transcription factor Nfatc1, but also increased the apoptosis of mature osteoclasts in the absence of RANKL.ConclusionsOur results indicate that despite the anti-tumoral effect of AT-406, its use in the context of bone metastatic disease needs to be carefully monitored for the induction of increased bone resorption. We also hypothesize that the combination of AT-406 with anti-RANKL directed therapies could have a beneficial effect, especially in RANK-positive tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.