Uracil-DNA glycosylase (UDG), a key highly conserved DNA repair enzyme involved in uracil excision repair, was discovered in Escherichia coli . The Bacillus subtilis bacteriophage, PBS-1 and PBS-2, which contain dUMP residues in their DNA, express a UDG inhibitor protein, Ugi which binds to UDG very tightly to form a physiologically irreversible complex. The X-ray analysis of the E. coli UDG ( Ec UDG)-Ugi complex at 3.2 A resolution, leads to the first structure elucidation of a bacterial UDG molecule. This structure is similar to the enzymes from human and viral sources. A comparison of the available structures involving UDG permits the delineation of the constant and the variable regions of the molecule. Structural comparison and mutational analysis also indicate that the mode of action of the enzyme from these sources are the same. The crystal structure shows a remarkable spatial conservation of the active site residues involved in DNA binding in spite of significant differences in the structure of the enzyme-inhibitor complex, in comparison with those from the mammalian and viral sources. Ec UDG could serve as a prototype for UDGs from pathogenic prokaryotes, and provide a framework for possible drug development against such pathogens with emphasis on features of the molecule that differ from those in the human enzyme.
The structures of a new crystal form of free Escherichia coli uracil DNA glycosylase (UDG), containing four molecules in the asymmetric unit, and two forms of its complex with the proteinaceous inhibitor Ugi, containing two and four crystallographically independent complexes, have been determined. A comparison of these structures and the already known crystal structures containing UDG shows that the enzyme can be considered to be made up of two independently moving structural entities or domains. A detailed study of free and DNA‐bound human enzyme strengthens this conclusion. The domains close upon binding to uracil‐containing DNA, whereas they do not appear to do so upon binding to Ugi. The comparative study also shows that the mobility of the molecule involves the rigid‐body movement of the domains superposed on flexibility within domains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.