ABSTRACT:The microhardness (H) technique is used to characterize the quality of the weld line in injection-molded glassy polystyrene by means of a cylindrical obstacle. In particular, the effect of the indentation location (closer or further from the obstacle edge parallel to the injection direction and across the weld line), both on the surface and in the bulk, was examined. Only for surface measurements close to the obstacle (up to 10 mm) a well-pronounced decrease in H (ϳ30%), followed by a sharp increase in a narrow distance (0.20 -0.25 mm), was observed. For the bulk measurements on the same location a slight decrease in H was detected. Additional H measurements made up to 60 mm from the obstacle for both cases showed that the weld line remains undetectable. The results obtained reveal that the presence of a cylindrical obstacle causes the formation of a weld line on and near the surface only at distances not exceeding the obstacle diameter. At larger distances, because of the effective mutual interdiffusion of polymer chains, the two parallel fronts coming from the two sides of the obstacle developed a homogeneous material without any weld line according to the microhardness test.
ABSTRACT:The microhardness (H) technique has been used to characterize the quality of the weld line in injection-molded tensile bars from a two-component machine in which both melt streams from the same material can be independently controlled. More specific, the influence of melt temperature and indentation location (closer or further from the sample edge parallel to the
In an attempt to overcome the poor mechanical properties of native, i.e., untreated gelatin, laminates based on gelatin and gelatin/starch blend reinforced with fabrics (linen or silk) were prepared by melt pressing. The mechanical properties of fresh and artificially aged samples were reported previously. In the present series of two consecutive papers we present data concerning the dissolution and biodegradation of these laminates. A two‐step procedure for treatment of the laminates was used. The first step is treatment with an aqueous buffer solution, the second with a buffered solution of the enzyme subtilisin. The time‐course of the absorbance at 280 nm of the “washing” solutions was followed. A number of kinetic characteristics was determined and discussed with respect to laminate composition and their treatments. In the present Part 1 about the environmental behavior of these new biodegradable materials, the non‐enzymatic solubilization in water and buffer solution (i.e., simple dissolution) of fresh and artificially aged samples is described. The dissolution process was followed spectrophotometrically as well as by the weight losses. It was found that gelatin‐based silk‐ or linen‐reinforced laminates were subject to dissolution, similarly to the gelatin and gelatin‐based materials studied in previous works. In addition, it was established that the thermal treatment of the laminates during their melt pressing leads to postcondensation reactions and crosslinking of the gelatin macromolecules. Similar reactions occur between the matrix and the reinforcing element silk, thus improving their mutual adhesion. Decreased gelatin dissolution ability was observed after the thermal treatment, in the presence of reinforced fabrics and upon “additional” crosslinking with methylenedi(p‐phenyl) diisocyanate. The untreated gelatin is the only one that dissolves completely in water. The artificially aged samples tend to dissolve better than the respective fresh samples due to degradation processes during aging.
magnified image
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.