Background Antibiotic resistance is currently the most serious global threat to the effective treatment of bacterial infections. Antibiotic resistance has been established to adversely affect both clinical and therapeutic outcomes, with consequences ranging from treatment failures and the need for expensive and safer alternative drugs to the cost of higher rates of morbidity and mortality, longer hospitalization, and high‐healthcare costs. The search for new antibiotics and other antimicrobials continues to be a pressing need in humanity's battle against bacterial infections. Antibiotic resistance appears inevitable, and there is a continuous lack of interest in investing in new antibiotic research by pharmaceutical industries. This review summarized some new strategies for tackling antibiotic resistance in bacteria. Methods To provide an overview of the recent research, we look at some new strategies for preventing resistance and/or reviving bacteria's susceptibility to already existing antibiotics. Results Substantial pieces of evidence suggest that antimicrobials interact with host immunity, leading to potent indirect effects that improve antibacterial activities and may result in more swift and complete bactericidal effects. A new class of antibiotics referred to as immuno‐antibiotics and the targeting of some biochemical resistance pathway components including inhibition of SOS response and hydrogen sulfide as biochemical underlying networks of bacteria can be considered as new emerging strategies to combat antibiotic resistance in bacteria. Conclusion This review highlighted and discussed immuno‐antibiotics and inhibition of SOS response and hydrogen sulfide as biochemical underlying networks of bacteria as new weapons against antibiotic resistance in bacteria.
Urinary tract infections (UTIs) account for one of the major reasons for most hospital visits and the determination of the antimicrobial susceptibility patterns of uropathogens will help to guide physicians on the best choice of antibiotics to recommend to affected patients. This study is designed to isolate, characterize, and determine the antimicrobial susceptibility patterns of the pathogens associated with UTI in Anambra State Teaching Hospital, Amaku, Anambra State, Nigeria. Clean catch urine samples of inpatient and outpatient cases of UTI were collected and bacteriologically analyzed using standard microbiological procedures. Antibiogram was done by the Kirby-Bauer disc diffusion method. The most prevalent isolates were S. aureus (28%), E. coli (24.6%), and S. saprophyticus (20%). The antibacterial activities of the tested agents were in the order of Augmentin < Ceftazidime < Cefuroxime < Cefixime < Gentamicin < Ofloxacin < Ciprofloxacin < Nitrofurantoin. It was found that all the organisms were susceptible in varying degrees to Nitrofurantoin, Ciprofloxacin, and Ofloxacin. It was also observed that all the bacterial species except Streptococcus spp. have a Multiple Antibiotic Resistance Index (MARI) greater than 0.2. For empiric treatment of UTIs in Awka locality, Nitrofurantoin, Ciprofloxacin, and Ofloxacin are the first line of choice.
Chronic inflammation and infection of the nasal sinuses, also referred to as Chronic Rhinosinusitis (CRS), severely affects patients’ quality of life. Adhesions, ostial stenosis, infection and inflammation relapses complicate chronic sinusitis treatment strategies. Drug-eluting stents, packings or implants have been suggested as reasonable alternatives for addressing these concerns. This article reviewed potential drug candidates for nasal implants, formulation methods/optimization and characterization methods. Clinical applications and important considerations were also addressed. Clinically-approved implants (Propel™ implant, the Relieva stratus™ MicroFlow spacer, and the Sinu-Foam™ spacer) for CRS treatment was an important focus. The advantages and limitations, as well as future considerations, challenges and the need for additional research in the field of nasal drug implant development, were discussed.
Little is known about the molecular basis of antibiotic resistance among uropathogens in Southeast Nigeria. The aim of the study was to characterize enterobacterial uropathogens with respect to drug resistance. One hundred (100) enterobacterial uropathogens were studied. Their antibiotic susceptibility patterns were evaluated using disk diffusion, screened, and confirmed phenotypically for the presence of β-lactamases: ESBL, AmpC, carbapenemase, and MBLs. Screen positives were further tested for various β-lactamase genes by PCR. Our isolates showed variable resistance to most drugs tested. Out of the 58 ESBL screen positive E. coli, 35 were confirmed positive with PCR. The predominant ESBL gene was blaTEM while blaSPM was the most prevalent among MBL genes. Forty-six percentage of the screen positive Salmonella isolates coharbored blaTEM + SHV genes. Nine of the 10 ESBL screen positive K. pneumoniae were phenotypically and PCR positive. Three isolates of K. pneumoniae were positive for MBL genes. All the 10 C. freundii were positive for ESBL genes. The study showed high prevalence of drug-resistant genes among the enterobacterial uropathogens. Majority of the uropathogens harbored >1 antibiotic-resistant gene, and the most predominant gene was ESBL (blaTEM) followed by the MBL (SPM) gene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.